使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.datasets import load_iris from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.neighbors
概述 MobileNetsV2是基于一个流线型的架构,它使用深度可分离的卷积来构建轻量级的深层神经网,此模型基于 MobileNetV2: Inverted Residuals and Linear Bottlenecks 中提出的模型结构实现.可以用图像分类任务,比如猫狗分类.花卉分类等等.用户提供一系列带有标注的数据集,该算法会载入在ImageNet-1000上的预训练模型,在用户数据集上做迁移学习.训练后生成的模型可直接在ModelArts平台部署为在线服务或批量服务,同时支持使用CPU.
[TOC] 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen121/ k近邻算法(鸢尾花分类) 一.导入模块 import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from matplotlib.font_manager import Fon
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的来说是很受用的.全书一共有30篇论文,本书期望里面的文章随着时间能成为经典,不过正如bengio(超级大神)说的“the wisdom distilled here should be taken as a guideline, to be tried and challenged, not as a pra
决策树算法 决策树算法主要有ID3, C4.5, CART这三种. ID3算法从树的根节点开始,总是选择信息增益最大的特征,对此特征施加判断条件建立子节点,递归进行,直到信息增益很小或者没有特征时结束. 信息增益:特征 A 对于某一训练集 D 的信息增益 \(g(D, A)\) 定义为集合 D 的熵 \(H(D)\) 与特征 A 在给定条件下 D 的熵 \(H(D/A)\) 之差. 熵(Entropy)是表示随机变量不确定性的度量. \[ g(D, A) = H(D) - H(D \mid A)