首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
基于Openstack日志的异常检测
2024-08-23
Openstack 错误日志查看方法
openstack错误日志查看方法 https://blog.csdn.net/ZanShichun/article/details/72672945
基于机器学习的web异常检测
基于机器学习的web异常检测 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一方面,硬规则在灵活的黑客面前,很容易被绕过,且基于以往知识的规则集难以应对0day攻击:另一方面,攻防对抗水涨船高,防守方规则的构造和维护门槛高.成本大. 基于机器学习技术的新一代web入侵检测技术有望弥补传统规则集方法的不足,为web对抗的防守端带来新的发展和突破.机器学习方法能够基于大量数据进行
11. 几点基于Web日志的Webshell检测思路
摘要: Web日志记录了网站被访问的情况,在Web安全的应用中,Web日志常被用来进行攻击事件的回溯和取证.Webshell大多由网页脚本语言编写,常被入侵者用作对网站服务器操作的后门程序,网站被植入Webshell就说明网站已被入侵.Webshell检测手段常见的有运行后门查杀工具,比如D盾,或者部署防护软硬件对网站流量和本地文件进行检查,代价较大且对网站的访问性能有影响.因此,结合作者这几年做服务器入侵分析的一点经验,总结几点基于Web日志的轻量级的Webshell检测思路,通过对服务器日志
基于机器学习的web异常检测——基于HMM的状态序列建模,将原始数据转化为状态机表示,然后求解概率判断异常与否
基于机器学习的web异常检测 from: https://jaq.alibaba.com/community/art/show?articleid=746 Web防火墙是信息安全的第一道防线.随着网络技术的快速更新,新的黑客技术也层出不穷,为传统规则防火墙带来了挑战.传统web入侵检测技术通过维护规则集对入侵访问进行拦截.一方面,硬规则在灵活的黑客面前,很容易被绕过,且基于以往知识的规则集难以应对0day攻击:另一方面,攻防对抗水涨船高,防守方规则的构造和维护门槛高.成本大. 基于机器学习技术的
几点基于Web日志的Webshell检测思路
http://www.open-open.com/lib/view/open1456751673359.html
基于变分自编码器(VAE)利用重建概率的异常检测
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自
基于RRCF(robust random cut forest)的时间序列异常检测流程
摘要:RRCF是亚马逊提出的一个流式异常检测算法,是对孤立森林的改进,可对时序或非时序数据进行异常检测.本文是我从事AIOps研发工作时所做的基于RRCF的时序异常检测方案. 1. 数据格式 将时间序列以滑动窗口的形式转换为d维空间点.例如对于时间序列[1,2,3,4,5,6,7,8],d=5,那么可以将该时间序列转换为4个空间点[(1,2,3,4,5),(2,3,4,5,6),(3,4,5,6,7),(4,5,6,7,8)].RCF以这样的高维空间点进行建模和检测. 2.
LSTM UEBA异常检测——deeplog里其实提到了,就是多分类LSTM算法,结合LSTM预测误差来检测异常参数
结合CNN的可以参考:http://fcst.ceaj.org/CN/article/downloadArticleFile.do?attachType=PDF&id=1497 除了行为,其他还结合了时序的异常检测的:https://conference.hitb.org/hitbsecconf2018ams/materials/D1T2%20-%20Eugene%20Neyolov%20-%20Applying%20Machine%20Learning%20to%20User%20Behavi
Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异常种类非常多,千奇百怪.直白地说:正常的情况大同小异,而异常各不相同.这种情况用有限的正例样本(异常点)给有监督模型学习就很难从中学到有效的规律 0x2:常见的有监督学习检测算法 这块主要依靠庞大的打标样本,借助像DLearn这样的网络对打标训练样本进行拟合 0x3:常见的异常检测算法 基于模型的技
从时序异常检测(Time series anomaly detection algorithm)算法原理讨论到时序异常检测应用的思考
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 股票市场和某些产品的销售周期 数据需要有较强的稳定性,例如”预测商店营业额“和"预测打车订单"的稳定性就比"预测某台服务器何时处于被入侵的异常状态"要强.从形成机制上讲,商店营业额和打车订单是由人的行为驱动的,风是由自
异常检测算法:Isolation Forest
iForest (Isolation Forest)是由Liu et al. [1] 提出来的基于二叉树的ensemble异常检测算法,具有效果好.训练快(线性复杂度)等特点. 1. 前言 iForest为聚类算法,不需要标记数据训练.首先给出几个定义: 划分(partition)指样本空间一分为二,相当于决策树中节点分裂: isolation指将某个样本点与其他样本点区分开. iForest的基本思想非常简单:完成异常点的isolation所需的划分数大于正常样本点(非异常).如下图所示: \
网络KPI异常检测之时序分解算法
时间序列数据伴随着我们的生活和工作.从牙牙学语时的“1, 2, 3, 4, 5, ……”到房价的走势变化,从金融领域的刷卡记录到运维领域的核心网性能指标.时间序列中的规律能加深我们对事物和场景的认识,时间序列中的异常能提醒我们某些部分可能出现问题.那么如何去发现时间序列中的规律.找出其中的异常点呢?接下来,我们将揭开这些问题的面纱. 什么是异常 直观上讲,异常就是现实与心理预期产生较大差距的特殊情形.如2020年春节的新型肺炎(COVID-19,coronavirus disease 2019)
基于PySpark的网络服务异常检测系统 (四) Mysql与SparkSQL对接同步数据 kmeans算法计算预测异常
基于Django Restframework和Spark的异常检测系统,数据库为MySQL.Redis, 消息队列为Celery,分析服务为Spark SQL和Spark Mllib,使用kmeans和随机森林算法对网络服务数据进行分析:数据分为全量数据和正常数据,每天通过自动跑定时job从全量数据中导入正常数据供算法做模型训练. 使用celery批量导入(指定时间段)正常样本到数据库 def add_normal_cat_data(data): """ 构建数据model
kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异常值定义为与其余数据群1不一致的样本或事件.异常值通常包含有关影响数据生成过程2的系统和实体的异常特征的有用信息. 异常检测算法的常见应用包括: 入侵检测系统信用卡诈骗有趣的传感器事件医学诊断在本文中,我们将重点介绍异常检测 - 信用卡欺诈的最常见应用之一.通过一些简单的离群值检测方法,可以在真实世
AIOps探索:基于VAE模型的周期性KPI异常检测方法——VAE异常检测
AIOps探索:基于VAE模型的周期性KPI异常检测方法 from:jinjinlin.com 作者:林锦进 前言 在智能运维领域中,由于缺少异常样本,有监督方法的使用场景受限.因此,如何利用无监督方法对海量KPI进行异常检测是我们在智能运维领域探索的方向之一.最近学习了清华裴丹团队发表在WWW 2018会议上提出利用VAE模型进行周期性KPI无监督异常检测的论文:<Unsupervised Anomaly Detection via Variational Auto-Encoder for
基于图的异常检测(三):GraphRAD
基于图的异常检测(三):GraphRAD 风浪 一个快乐的数据玩家/风控/图挖掘 24 人赞同了该文章 论文:<GraphRAD: A Graph-based Risky Account Detection System>作者:Jun Ma(Amazon),Danqing Zhang(Berkeley)来源:MLG ' 18 本文介绍Amazon基于图的欺诈交易账户检测系统,相比LOCKINFER 和 OddBall,本文是面向实际业务设计的检测系统,并使用了标签数据. 早期做过十分类似的项目
异常检测-基于孤立森林算法Isolation-based Anomaly Detection-2-实现
参考https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit , max_samples=’auto’, contamination=’legacy’, max_features=, warm_start=False) 孤立森林算法 使用孤立森林算法对每个样本返回异常分数 孤立森林通过随机选取一个特征来“隔
异常检测-基于孤立森林算法Isolation-based Anomaly Detection-1-论文学习
论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf 1. INTRODUCTION 异常是与正常样例有着不同的数据特性的数据模式.检测异常的能力具有重要的相关性,异常经常在多种应用领域中提供关键和可操作的信息.比如在信用卡交易中能够显示信用卡的使用有欺诈行为:在天文图像中的异常点能够说明发现了新的星星:一个不正常的计算机网络流量模式能够代表(stand for)
基于高斯分布的异常检测(Anomaly Detection)算法
记得在做电商运营初期,每每为我们频道的促销活动锁取得的“超高”销售额感动,但后来随着工作的深入,我越来越觉得这里面水很深.商家运营.品类运营不断的通过刷单来获取其所需,或是商品搜索排名,或是某种kpi指标,但这些所谓的“脏数据”,却妨碍了平台运营者对于真实数据的分析和促销效果的评估.今天我们讨论一种非监督学习算法(Unsupervised Learning Algorithm),试图在真实数据中,找出并标注异常数据. 该算法是基于高斯分布的异常检测算法(Anomaly Detection Alg
5-Spark高级数据分析-第五章 基于K均值聚类的网络流量异常检测
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找
基于PySpark的网络服务异常检测系统 阶段总结(二)
在上篇博文中介绍了网络服务异常检测的大概,本篇将详细介绍SVDD和Isolation Forest这两种算法 1. SVDD算法 SVDD的英文全称是Support Vector Data Description,又称为支持向量数据描述,它是由Tax和Duin提出的一种单分类算法,它起源于V.VapniH的支持向量机.它计算围绕具有一组最小体积的球形决策边界对象,可以用于新奇检测或异常检测,检测从给定数据集中偏离的对象.通过使用不同的内核,SVDD可以获得更灵活和更准确的数据描述,通过区分由训练
热门专题
sequelize转化毫秒时间戳为日期
ffmpeg wav 转码 mp3
服务器ping不通百度
vue前端启动后不能通过ip访问
centos7虚拟机增加硬盘空间
win7 快速启动栏自动生成
sql server连接java web
VS 2015如何clone代码
java post 异步回调
cmd中报错no closing quote
oracle 获取数据字典的权限
oracle SQL注入过滤 类
echarts地图为何要和百度地图结合
使用docker-elk但是kibana
windows arp -s 指定网口
linux mkdir 权限
虚拟状态为正确的是什么
socket一句一句收
usb blaster哈希值找不到
linux root权限变为用户