堆基础 堆(Heap)是具有这样性质的数据结构:1/完全二叉树 2/所有节点的值大于等于(或小于等于)子节点的值: 图片来源:这里 堆可以用数组存储,插入.删除会触发节点shift_down.shift_up操作,时间复杂度O(logn). 堆是优先级队列(Priority queue)的底层数据结构,较常使用优先级队列而非直接使用堆处理问题.利用堆的性质可以方便地获取极值,例如 LeetCode 题目 215. Kth Largest Element in an Array,时间复杂度O(nl
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面对图相关问题,第一步是将问题转为用图表示(邻接表/邻接矩阵),二是使用图相关算法求解. 相关LeetCode题: 997. Find the Town Judge 题解 1042. Flower Planting With No Adjacent 题解 图的遍历(DFS/BFS) 图的遍历/搜索
二叉树基础 满足这样性质的树称为二叉树:空树或节点最多有两个子树,称为左子树.右子树, 左右子树节点同样最多有两个子树. 二叉树是递归定义的,因而常用递归/DFS的思想处理二叉树相关问题,例如LeetCode题目 104. Maximum Depth of Binary Tree: // 104. Maximum Depth of Binary Tree int maxDepth(TreeNode* root) { ; +max(maxDepth(root->left),maxDepth(roo
分治法基础 分治法(Divide and Conquer)顾名思义,思想核心是将问题拆分为子问题,对子问题求解.最终合并结果,分治法用伪代码表示如下: function f(input x size n) if(n < k) solve x directly and return else divide x into a subproblems of size n/b call f recursively to solve each subproblem Combine the results