一种矩阵运算方法,又叫Cholesky分解.所谓平方根法,就是利用对称正定矩阵的三角分解得到的求解对称正定方程组的一种有效方法.它是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解.它要求矩阵的所有特征值必须大于零,故分解的下三角矩阵的对角元也是大于零的. https://en.wikipedia.org/wiki/Positive-definite_matrix In linear algebra, a symmetric {\displaystyle n} × {\displa
Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和
Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge which I have learned before is forgot...(呜呜) 1.Terminology 单位矩阵:identity matrix 特征值:eigenvalues 特征向量:eigenvectors 矩阵的秩:rank 对角矩阵:diagonal matrix 对角化矩阵
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder