首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
复数fft和实数fft区别
2024-11-05
一个蒟蒻对FFT的理解(蒟蒻也能看懂的FFT)
建议同学们先自学一下"复数(虚数)"的性质.运算等知识,不然看这篇文章有很大概率看不懂. 前言 作为一个典型的蒟蒻,别人的博客都看不懂,只好自己写一篇了. 膜拜机房大佬 HY 一. FFT是蛤?? FFT (快速傅里叶变换) 的作用时再 O(nlogn) 时间算出多项式乘法的一个特别神奇的算法. 大家平时码的多项式乘法都是 O(n^2) 的吧 #include<iostream> #include<cstdio> using namespace std; ],b
FS,FT,DFS,DTFT,DFT,FFT的联系和区别
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,
FS,FT,DFS,DTFT,DFT,FFT的联系和区别 数字信号处理
DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统>这两门课的朋友,都知道时域上任意连续的周期信号可以分解为无限多个正弦信号之和,在频域上就表示为离散非周期的信号,即时域连续周期对应频域离散非周期的特点,这就是傅里叶级数展开(FS),它用于分析连续周期信号. FT是傅里叶变换,它主要用于分析连续非周期信号,由于信号是非周期的,它必包含了各种频率的信号,
【bzoj2179】FFT快速傅立叶 FFT模板
2016-06-01 09:34:54 很久很久很久以前写的了... 今天又比较了一下效率,貌似手写复数要快很多. 贴一下模板: #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> #include<cmath> #include<queue> #include<complex>
FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理都非常到位的总结 推荐ppl巨佬的简明易懂的总结 FFT 多项式乘法的蹊径--点值表示法 一般我们把两个长度为\(n\)的多项式乘起来,就类似于做竖式乘法,一位一位地乘再加到对应位上,是\(O(n^2)\)的 如何优化?直接看是没有思路的,只好另辟蹊径了. 多项式除了我们常用的系数表示法\(y=a_
拆系数FFT(任意模数FFT)
拆系数FFT 对于任意模数 \(mod\) 设\(m=\sqrt {mod}\) 把多项式\(A(x)\)和\(B(x)\)的系数都拆成\(a\times m+b\)的形式,时\(a, b\)都小于\(m\) 提出,那么一个多项式就可以拆成两个多项式的加法 一个是\(a*m\)的,一个是\(b\)的 直接乘法分配律,\(aa\)一遍,\(ab\)一遍,\(ba\),\(bb\)一遍,四遍\(FFT\) 乘出来不会超过取模范围 然后合并直接 \[(a\times m+b)(c\times m+d)
【BZOJ 2179】 2179: FFT快速傅立叶 (FFT)
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3308 Solved: 1720 Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Output 12 数据范围: n<=60000 HINT
洛谷P3803 【模板】多项式乘法(FFT) 【fft】
题目 这是一道FFT模板题 输入格式 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输出格式 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输入样例 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输出样例 1 2 1 2 1 2 1 提示 1 4 5 2 题解 表示迭代还不是很懂 只好背模板... #include<iostream> #incl
bzoj 2179: FFT快速傅立叶 -- FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MB Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Output 12 数据范围: n<=60000 HINT #include<map> #include
BZOJ2179:FFT快速傅立叶(FFT)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出一行,即x*y的结果. Sample Input 1 3 4 Sample Output 12 数据范围: n<=60000 Solution FFT模板题,做的时候注意处理一下进位和前导零就好 Code #include<iostream> #include<cstring>
洛谷P4721 【模板】分治 FFT(分治FFT)
传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_{i=l}^{mid}f[i]g[x-i]$ 发现右边那个东西可以用卷积快速计算 那么只要一边分治一边跑FFT统计贡献就行了 说是分治FFT实际上代码里写的是NTT…… 而且分治FFT跑得好慢多项式求逆的速度是它的10倍啊…… //minamoto #include<iostream> #incl
【bzoj2179】FFT快速傅立叶 FFT
题目描述 给出两个n位10进制整数x和y,你需要计算x*y. 输入 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. 输出 输出一行,即x*y的结果. 样例输入 1 3 4 样例输出 12 题解 裸的FFT 然而压位会导致精度误差,很难改正,所以最好不要压位. (我就是因为压位WA了无数次QAQ) #include <cstdio> #include <cmath> #include <algorithm> #define N
bzoj 2179 FFT快速傅立叶 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2179 默写板子,注释的是忘记的地方. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cmath> using namespace std; typedef double db; <<); db co
BZOJ 2179 FFT快速傅立叶 ——FFT
[题目分析] 快速傅里叶变换用于高精度乘法. 其实本质就是循环卷积的计算,也就是多项式的乘法. 两次蝴蝶变换. 二进制取反化递归为迭代. 单位根的巧妙取值,是的复杂度成为了nlogn 范德蒙矩阵计算逆矩阵又减轻了拉格朗日插值法的复杂度. 十分神奇. [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #includ
BZOJ2179: FFT快速傅立叶 FFT实现高精度乘法
Code: #include <cstdio> #include <algorithm> #include <cmath> #include <cstring> #define setIO(s) freopen(s".in","r",stdin) #define maxn 200000 #define pi 3.1415926535898 using namespace std; int len=1,l,r[maxn&
【Matlab】快速傅里叶变换/ FFT/ fftshift/ fftshift(fft(fftshift(s)))
[自我理解] fft:可以指定点数的快速傅里叶变换 fftshift:将零频点移到频谱的中间 用法: Y=fftshift(X) Y=fftshift(X,dim) 描述:fftshift移动零频点到频谱中间,重新排列fft,fft2和fftn的输出结果. 将零频点放到频谱的中间对于观察傅立叶变换是有用的. fftshift(fft(fftshift(x))) 先将s搬到中心,然后fft变换,再将变换后的移到中心. 使用fftshift(fft(fftshift(x)))后的效果: 1.不改变频
FFT && 复数重载
复数重载 与 FFT 1.复数重载: 重载了复数的运算,即重载了复数的加减乘以及赋初值. struct Complex{ //复数的重载 double r,i; IL Complex(){r = 0; i = 0;} IL Complex(RG double a,RG double b){r = a; i = b;} IL Complex operator +(Complex B){ return Complex(r+B.r,i+B.i); } IL Complex operator -(Com
DFT,DTFT,DFS,FFT区别
学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系.首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算. 学过卷积,我们都知道有时域卷积定理和频域卷积定理,在这里只需要记住两点:1.在一个域的相乘等于另一个域的卷积:2.与脉冲函数的卷积,在每个脉冲的位置上将产生
【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的文字好像有点多呀qwq啊话痨是真的qwq) [正题] 一些预备知识(有了解的就可以直接跳啦,mainly from 算导) fft的话,用来解决与多项式乘法有关的问题 关于多项式 一个以x为变量的多项式定义在一个代数域$F$上,将函数$A(x)$表示为形式和: $A(x) = \sum\limits
多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】
原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/例题与常用套路[入门] 前置技能 对复数以及复平面有一定的了解 对数论要求了解:逆元,原根,中国剩余定理 对分治有充足的认识 对多项式有一定的认识,并会写 $O(n^2)$ 的高精度乘法 本文概要 多项式定义及基本卷积形式 $Karatsuba$ 乘法 多项式的系数表示与点值表示,以及拉格朗日插值法
十分简明易懂的FFT(快速傅里叶变换)
https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效.快速计算方法的统称,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著. FFT(Fast Fourier
热门专题
数据库,计算圆周率对应的角度
接口中的方法都自动使用
docker同步时间
misc图片隐藏信息
spring 将xml配置分离出来
服务器CPU总核数是什么意思
yii2 检测表是否存在
javascript清空type=file类型的value值
zabbix5.4自带模板监控mysql
van-sticky 吸顶 有空隙
layui 级联赋值
qt const map初始化
安卓查app 证书期限
stomp 限制每个消费者只能消费1条
kepware产生可变字符串
stm32串口缓冲区设置
linux面试一般会问到什么
微信小程序循环输出字符串
64位win7无法打开32位IE
nginx禁用缓冲区配置