最近看了好多潜类别轨迹latent class trajectory models的文章,发现这个方法和我之前常用的横断面数据的潜类别和潜剖面分析完全不是一个东西,做纵向轨迹的正宗流派还是这个方法,当然了这个方法和潜增长和增长曲线模型在做法并没有实际区别,都是用的hlme这个函数.但是文献中的叫法和花样就比较多了. 像本文写的latent class trajectory models,之前写的潜类别增长模型LCGA和增长曲线模型GMM都是潜类别线性混合模型latent class linear
今天给大家写广义混合效应模型Generalised Linear Random Intercept Model的第一部分 ,混合效应logistics回归模型,这个和线性混合效应模型一样也有好几个叫法: Mixed Effects Logistic Regression is sometimes also called Repeated Measures Logistic Regression, Multilevel Logistic Regression and Multilevel Bina
SAS基础知识 SAS里面的PROC一览 The ACECLUS Procedure : 聚类的协方差矩阵近似估计(approximate covariance estimation for clustering) The ANOVA Procedure :方差分析 The BOXPLOT Procedure :箱形图 The CALIS Procedure :结构方程模型 The CANCORR Procedure :典型相关分析 The CANDISC Procedure :主成分分析和典型
Python 在解决数据科学任务和挑战方面继续处于领先地位.去年,我们曾发表一篇博客文章 Top 15 Python Libraries for Data Science in 2017,概述了当时业已证明最有帮助的Python库.今年,我们扩展了这个清单,增加了新的 Python 库,并重新审视了去年已经讨论过的 Python 库,重点关注了这一年来的更新. 我们的选择实际上包含了 20 多个库,因为其中一些库是相互替代的,可以解决相同的问题.因此,我们将它们放在同一个分组. ▌核心库和统计数