高维空间中的球体 注:此系列随笔是我在阅读图灵奖获得者John Hopcroft的最新书籍<Computer Science Theory for the Information Age>所作的笔记.其中我只详细读了第二(高维空间).三(随机图).六(VC理论)章,其他的某些章节也略微看了一下,但没有作笔记.此书的章节大部分是相互独立的,事实上每一个章节都是一个大的方向,代表了作者认为的在信息时代中最有用的计算机理论. (一)介绍 第一部分,高维空间.在现实的世界里,很多数据的维度都是及其高的
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后