首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
多元线性回归 随机变量 r语言代码
2024-08-03
多元线性回归公式推导及R语言实现
多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小
机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向量机SVM Support Vector Machine 朴素贝叶斯Naive Bayes K近邻KNN K- Nearest Neighbors K均值K-Means K-means如何形成群类 随机森林Random Forest 降维算法Dimensionality Reduction Algo
一元线性回归与R语言
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/)下载好R之后打开,就可以输入命令,如下,我输入 > y=c(61,57,58,40,90,35,68) 表示创建一个y向量,向量的值是c后面的内容> y 回显y[1] 61 57 58 40 90 35 68 > x=c(170,168,175,153,185,135,172) 创建一个x向量 > x 回显x[1] 170 168 175 153 185 135 172> > pl
机器学习-线性回归(基于R语言)
基本概念 利用线性的方法,模拟因变量与一个或多个自变量之间的关系.自变量是模型输入值,因变量是模型基于自变量的输出值. 因变量是自变量线性叠加和的结果. 线性回归模型背后的逻辑——最小二乘法计算线性系数 最小二乘法怎么理解? 它的主要思想就是求解未知参数,使得理论值与观测值之差(即误差,或者说残差)的平方和达到最小.在这里模型就是理论值,点为观测值.使得拟合对象无限接近目标对象. 一元线性回归与多元线性回归 自变量只有一个的时候叫一元线性回归,自变量有多个时候叫多元线性回归. R语言实现 bik
Rserve详解,R语言客户端RSclient【转】
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通
R语言 常见模型
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数
R语言 一套内容 从入门 到放弃
[怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0.1.tar.gz cd R-3.0.1 3.安装 yum install readline-devel yum install libXt-devel ./configure 如果使用rJava需要加上 --enable-R-shlib ./configure --enable-R-shlib -
关联规则-R语言实现
关联规则code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-contai
第二篇:R语言数据可视化之数据塑形技术
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
R语言写2048游戏
2048 是一款益智游戏,只需要用方向键让两两相同的数字碰撞就会诞生一个翻倍的数字,初始数字由 2 或者 4 构成,直到游戏界面全部被填满,游戏结束. 编程时并未查看原作者代码,不喜勿喷. 程序结构如下: R语言代码: #!/usr/bin/Rscript #画背景 draw_bg <- function(){ plot(0,0,xlim=c(0,0.8),ylim=c(0,0.8),type='n',xaxs="i", yaxs="i") for (i in
R语言分析(一)-----基本语法
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言
R语言通过loess去除某个变量对数据的影响
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回
R语言重要数据集分析研究——需要整理分析阐明理念
1.R语言重要数据集分析研究需要整理分析阐明理念? 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候如何下手分析,数据分析的第一步,探索性数据分析. 统计量,即统计学里面关注的数据集的几个指标,常用的如下:最小值,最大值,四分位数,均值,中位数,众数,方差,标准差,极差,偏度,峰度 先来解释一下各个量得含义,浅显就不说了,这里主要说一下不常见的 众数:出现次数最多的 方差:每个样本值与均值的差得平方和的平均数 标准差:又称均方差,是方差的二次方根,用来衡量一个数据集的集中性 极差:最大值
Windows下使用Rtools编译R语言包
使用devtools安装github中的R源代码时,经常会出各种错误,索性搜了一下怎么在Windows下直接打包,网上的资料也是参差不齐,以下是自己验证通过的. 一.下载Rtools 下载地址:https://cran.r-project.org/bin/windows/Rtools/ 根据自己安装的R版本,下载兼容的Rtools即可,我下载的是Rtools35.exe 二.安装Rtools Windows下的安装都是傻瓜式的,一步步点确定即可,有两个地方需要注意: 2.1 安装路径 第一次安装
R语言通过loess去除某个变量对数据的影响--CNV分析
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回归
手把手教你学习R语言
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前
R语言—使用函数sample进行抽样
在医学统计学或者流行病学里的现场调查.样本选择经常会提到一个词:随机抽样.随机抽样是为了保证各比较组之间均衡性的一个很重要的方法.那么今天介绍的第一个函数就是用于抽样的函数sample: > x=1:10 > sample(x=x) [1] 3 5 9 6 10 7 2 1 8 4 第一行代码表示给x向量赋值1~10,第二行代码表示对x向量进行随机抽样.结果输出为每次抽样抽得的结果,可以看出该抽样为无放回抽样------最多抽n次,n为x向量中元
R语言学习——根据信息熵建决策树KD3
R语言代码 决策树的构建 rm(list=ls()) setwd("C:/Users/Administrator/Desktop/R语言与数据挖掘作业/实验3-决策树分类") #save print sink("tree1.txt") inputfile=read.csv(file="./bank-data.csv",header=TRUE) #age for(i in 1:length(inputfile$age)) inputfile$age
热门专题
oracle 11 超过1分钟 链接
ORCAD原理图太大
VIVADO wrapper文件 FCLK_CLK0
python中lsit 切片和索引
c#递归查询所有子节点
spring boot 上传解析csv
github前端开源项目
java如何获取文件夹的绝对路径
python创建excel表,填入数据
hive 如何查看完整建表语句
buuctf misc 二维码
drf_yasg 排序
particlesjs 鼠标 遮挡
ida py脚本 打印函数
nodejs api webpack打包后部署到服务器
java怎么读不出bom头
python groupby 字符串相加
微服务sample代码
outlook的pop3同步发件箱
局域网共享文件夹要账号密码