首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
多分类模型R语言案例
2024-09-04
数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)
案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数. 代码如下: > library(e1071)> classifier<-naiveBayes(iris[,1:4], iris[,5]) #或写成下面形式,都可以. > classifier<- naiveBayes(Species ~ ., data = iris) #其中Species是类别变量 #预测 > predict(classifier, iris[1, -5]) 预测结果为:
R语言︱线性混合模型理论与案例探究(固定效应&随机效应)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 线性混合模型与普通的线性模型不同的地方是除了有固定效应外还有随机效应. 笔者认为一般统计模型中的横截面回归模型中大致可以分为两个方向:一个是交互效应方向(调节.中介效应).一个是随机性方向(固定效应.随机效应). 两个方向的选择需要根据业务需求: 交互效应较多探究的是变量之间的网络关系,可能会有很多变量,多变量之间的关系: 而随机性探究的是变量
R语言中文社区历史文章整理(类型篇)
R语言中文社区历史文章整理(类型篇) R包: R语言交互式绘制杭州市地图:leafletCN包简介 clickpaste包介绍 igraph包快速上手 jiebaR,从入门到喜欢 Catterplots包,让你绘制不一样的图 今天再来谈谈REmap包 ggplot2你需要知道的都在这... R访问数据库管理系统(通过RODBC包和RMySQL包两种方式) NLP——自然语言处理(三)text2vec包 Rattle:数据挖掘的界面化操作 借助caret包实现特征选择的工作 R语言的高质量图形
机器学习(一) 从一个R语言案例学线性回归
写在前面的话 按照正常的顺序,本文应该先讲一些线性回归的基本概念,比如什么叫线性回归,线性回规的常用解法等.但既然本文名为<从一个R语言案例学会线性回归>,那就更重视如何使用R语言去解决线性回归问题,因此本文会先讲案例. 线性回归简介 如下图所示,如果把自变量(也叫independent variable)和因变量(也叫dependent variable)画在二维坐标上,则每条记录对应一个点.线性回规最常见的应用场景则是用一条直线去拟和已知的点,并对给定的x值预测其y值.而我们要做的就是找出
R语言机器学习之caret包运用
在大数据如火如荼的时候,机器学习无疑成为了炙手可热的工具,机器学习是计算机科学和统计学的交叉学科, 旨在通过收集和分析数据的基础上,建立一系列的算法,模型对实际问题进行预测或分类. R语言无疑为我们提供了很好的工具,它正是计算机科学和统计科学结合的产物,开源免费, 相对于Python.Orange Canvas.Weka.Kinme这些免费的数据挖掘软件来说,更容易上手,统计图形也更加美观. 今天在这里和大家介绍一下Caret机器学习包的一些基本用法. 一.数据收集 下载kern
R语言︱决策树族——随机森林算法
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习还是随机森林或支持向量机?>(作者Bio:SebastianRaschka)中提到,在日常机器学习工作或学习中,当我们遇到有监督学习相关问题时,不妨考虑下先用简单的假设空间(简单模型集合),例如线性模型逻辑回归.若效果不好,也即并没达到你的预期或评判效果基准时,再进行下换其他更复杂模型来实验. ----
主成分分析(PCA)原理及R语言实现
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个
主成分分析(PCA)原理及R语言实现 | dimension reduction降维
如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么样的问题.学习可以高效,但却没有捷径,你终将为自己的思维懒惰和行为懒惰买单. 2019年04月25日 不该先说covariacne matrix协方差矩阵的,此乃后话,先从直觉理解PCA.先看一个数据实例,明显的两个维度之间有一个相关性,大部分的方差可以被斜对角的维度解释,少数的noise则被虚线解
Rserve详解,R语言客户端RSclient【转】
R语言服务器程序 Rserve详解 http://blog.fens.me/r-rserve-server/ Rserve的R语言客户端RSclient https://blog.csdn.net/u011955252/article/details/65442783 http://blog.fens.me/series-r/ R的极客理想系列文章 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域
分类算法的R语言实现案例
最近在读<R语言与网站分析>,书中对分类.聚类算法的讲解通俗易懂,和数据挖掘理论一起看的话,有很好的参照效果. 然而,这么好的讲解,作者居然没提供对应的数据集.手痒之余,我自己动手整理了一个可用于分类算法的数据集(下载链接:csdn下载频道搜索“R语言与网站分析:数据集样例及分类算法实现”),并用R语言实现了朴素贝叶斯.SVM和人工神经网络分类. 数据集记录的是泰坦尼克号乘客的存活情况.数据集包括乘客的等级(class).年龄(age).性别(sex)和存活情况(survive),最终希望通过
分类-回归树模型(CART)在R语言中的实现
分类-回归树模型(CART)在R语言中的实现 CART模型 ,即Classification And Regression Trees.它和一般回归分析类似,是用来对变量进行解释和预测的工具,也是数据挖掘中的一种常用算法.如果因变量是连续数据,相对应的分析称为回归树,如果因变量是分类数据,则相应的分析称为分类树. 决策树是一种倒立的树结构,它由内部节点.叶子节点和边组成.其中最上面的一个节点叫根节点. 构造一棵决策树需要一个训练集,一些例子组成,每个例子用一些属性(或特征)和一个类别标记来描述.
如何在R语言中使用Logistic回归模型
在日常学习或工作中经常会使用线性回归模型对某一事物进行预测,例如预测房价.身高.GDP.学生成绩等,发现这些被预测的变量都属于连续型变量.然而有些情况下,被预测变量可能是二元变量,即成功或失败.流失或不流失.涨或跌等,对于这类问题,线性回归将束手无策.这个时候就需要另一种回归方法进行预测,即Logistic回归. 在实际应用中,Logistic模型主要有三大用途: 1)寻找危险因素,找到某些影响因变量的"坏因素",一般可以通过优势比发现危险因素: 2)用于预测,可以预测某种情况发生的概
R语言︱XGBoost极端梯度上升以及forecastxgb(预测)+xgboost(回归)双案例解读
XGBoost不仅仅可以用来做分类还可以做时间序列方面的预测,而且已经有人做的很好,可以见最后的案例. 应用一:XGBoost用来做预测 -------------------------------------------------- 一.XGBoost来历 xgboost的全称是eXtreme Gradient Boosting.正如其名,它是Gradient Boosting Machine的一个c++实现,作者为正在华盛顿大学研究机器学习的大牛陈天奇.他在研究中深感自己受制于现有库的计
R语言︱机器学习模型评估方案(以随机森林算法为例)
笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评价模型的方式. 常见的应用在监督学习算法中的是计算平均绝对误差(MAE).平均平方差(MSE).标准平均方差(NMSE)和均值等,这些指标计算简单.容易理解:而稍微复杂的情况下,更多地考虑的是一些高大上的指标,信息熵.复杂度和基尼值等等. 本篇可以用于情感挖掘中的监督式算法的模型评估,可以与博客对着看:R语言
R语言实现SOM(自组织映射)模型(三个函数包+代码)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- SOM自组织映射神经网络模型 的R语言实现 笔者前言: 最近发现这个被发明于1982年的方法在如今得到了极为广泛的应用,在提倡深度学习的时候,基于聚类的神经网络方法被众多人青睐.但是呢, 网上貌似木有人贴出关于SOM模型的R语言实现,我就抛砖引玉一下.一.SOM模型定义与优劣 自组织映射 ( Self Organization Map, SOM
基于R语言的时间序列指数模型
时间序列: (或称动态数列)是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列.时间序列分析的主要目的是根据已有的历史数据对未来进行预测.(百度百科) 主要考虑的因素: 1.长期趋势(Long-term trend) : 时间序列可能相当稳定或随时间呈现某种趋势. 时间序列趋势一般为线性的(linear),二次方程式的 (quadratic)或指数函数(exponential function). 2.季节性变动(Seasonal variation) 按时间变动,呈现重复性行为的序列
【机器学习与R语言】12- 如何评估模型的性能?
目录 1.评估分类方法的性能 1.1 混淆矩阵 1.2 其他评价指标 1)Kappa统计量 2)灵敏度与特异性 3)精确度与回溯精确度 4)F度量 1.3 性能权衡可视化(ROC曲线) 2.评估未来的性能 2.1 保持法 2.2 交叉验证 2.3 自助法抽样 1.评估分类方法的性能 拥有能够度量实用性而不是原始准确度的模型性能评价方法是至关重要的. 3种数据类型评价分类器:真实的分类值:预测的分类值:预测的估计概率.之前的分类算法案例只用了前2种. 对于单一预测类别,可将predict函数设定为
【机器学习与R语言】7-回归树和模型树
目录 1.理解回归树和模型树 2.回归树和模型树应用示例 1)收集数据 2)探索和准备数据 3)训练数据 4)评估模型 5)提高模型性能 1.理解回归树和模型树 决策树用于数值预测: 回归树:基于到达叶节点的案例的平均值做出预测,没有使用线性回归的方法. 模型树:在每个叶节点,根据到达该节点的案例建立多元线性回归模型.因此叶节点数目越多,一颗模型树越大,比同等回归树更难理解,但模型可能更精确. 将回归加入到决策树: 分类决策树中,一致性(均匀性)由熵值来度量:数值决策树,则通过统计量(如方差.标
R语言解读多元线性回归模型
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业
R语言 常见模型
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数
R语言︱机器学习模型评价指标+(转)模型出错的四大原因及如何纠错
笔者寄语:机器学习中交叉验证的方式是主要的模型评价方法,交叉验证中用到了哪些指标呢? 交叉验证将数据分为训练数据集.测试数据集,然后通过训练数据集进行训练,通过测试数据集进行测试,验证集进行验证. 模型预测效果评价,通常用相对绝对误差.平均绝对误差.根均方差.相对平方根误差等指标来衡量. 只有在非监督模型中才会选择一些所谓"高大上"的指标如信息熵.复杂度和基尼值等等. 其实这类指标只是看起来老套但是并不"简单",<数据挖掘之道>中认为在监控.评估监督模型
热门专题
PYTHON连接阿里云数据库 MySQL
没有用于调试JSON的扩展怎么办
用vgg-face求人脸相似度
redis 序列化乱码
C语言文本文件实现局部修改
this.$route.query 参数中带有 井号
pytorch 语法
java 如何验证微信小程序是否关注了公众号
vb.net限制文本框最大只能输入10
c# sqlite guid 数据类型
jpa 连接mysql视图自增ID
python使用蒙特·卡罗方法计算圆周率近似值
私服debugport清零
linux centos 7.5 百度网盘
vue3中el-table在翻页的时候记住上一页勾选的数据
github als算法
java byte 保存文件
hpux查看硬件信息
mongodb清空表数据
多表join驱动表排序