我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了.然而,映射后我们也不能100%保证可分.那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面. 看下面两张图: 可以看到一个离群点(可能是噪声)可以造成超平面的移动,间隔缩小,可见以前的模型对噪声非常敏感.再有甚者,如果离群点在另外一个类中,那么这时候就是线性不可分了. 这时候我们应该允许一些点游离并在在模型中违背限制条件(函数间