首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
如何查找OpenCV中自带已训练好的检测器
2024-10-19
【计算机视觉】如何使用opencv自带工具训练人脸检测分类器
前言 使用opencv自带的分类器效果并不是很好,由此想要训练自己的分类器,正好opencv有自带的工具进行训练.本文就对此进行展开. 步骤 1.查找工具文件: 2.准备样本数据: 3.训练分类器: 具体操作 注意,本文是在windows系统实现的,当然也可以在linux系统进行. 1.查找工具文件: opencv中的自带的分类器训练工具在开源库中以应用程序的类型呈现的,具体目录如下. .\opencv2410\build\x64\vc12\bin 可以在该目录下查找到相关的工具文件,有open
Opencv中SVM样本训练、归类流程及实现
支持向量机(SVM)中最核心的是什么?个人理解就是前4个字--"支持向量",一旦在两类或多累样本集中定位到某些特定的点作为支持向量,就可以依据这些支持向量计算出来分类超平面,再依据超平面对类别进行归类划分就是水到渠成的事了.有必要回顾一下什么是支持向量机中的支持向量. 上图中需要对红色和蓝色的两类训练样本进行区分,实现绿线是决策面(超平面),最靠近决策面的2个实心红色样本和1个实心蓝色样本分别是两类训练样本的支持向量,决策面所在的位置是使得两类支持向量与决策面之间的间隔都达到最大时决策
[OpenCV-Python] OpenCV 中计算摄影学 部分 IX 对象检测 部分 X
部分 IX计算摄影学 OpenCV-Python 中文教程(搬运)目录 49 图像去噪目标 • 学习使用非局部平均值去噪算法去除图像中的噪音 • 学习函数 cv2.fastNlMeansDenoising(),cv2.fastNlMeansDenoisingColored()等原理 在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑,中值平滑等,当噪声比较小时这些技术的效果都是很好的.在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素.简单来说,像素级别的
OpenCV中的SVM參数优化
SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最经常使用的是用于分类,只是SVM也能够用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,opencv中自然也是有集成好了,我们能够直接调用.OpenCV中的SVM算法是基于LibSVM软件包开发的,LibSVM是台湾大学林智仁(Lin Chih-Jen)等开发设计的一个简单.易于使用和高速有效的SVM模式识别与回归的软件包. 网上讲opencv中SVM使用的文章有非常多,但讲SVM參数优化的文章却
OpenCV中的SVM参数优化
OpenCV中的SVM参数优化 svm参数优化opencv SVMSVR参数优化CvSVMopencv CvSVM SVM(支持向量机)是机器学习算法里用得最多的一种算法.SVM最常用的是用于分类,不过SVM也可以用于回归,我的实验中就是用SVM来实现SVR(支持向量回归). 对于功能这么强的算法,OpenCV中自然也是有集成好了,我们可以直接调用.OpenCV中的SVM算法是基于LibSVM软件包开发的,LibSVM是台湾大学林智仁(Lin Chih-Jen)等开发设计的一个简单
OpenCV中的KNN
一.K近邻 有两个类,红色.蓝色.我将红色点标记为0,蓝色点标记为1.还要创建25个训练数据,把它们分别标记为0或者1.Numpy中随机数产生器可以帮助我们完成这个任务 import cv2 import numpy as np import matplotlib.pyplot as plt # 包含25个已知/训练数据的(x,y)值的特征集 trainData = np.random.randint(, , (, )).astype(np.float32) # 用数字0和1分别标记红色和蓝色
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (五)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 22 直方图 22.1 直方图的计算,绘制与分析目标 • 使用 OpenCV 或 Numpy 函数计算直方图 • 使用 Opencv 或者 Matplotlib 函数绘制直方图 • 将要学习的函数有:cv2.calcHist(),np.histogram()原理 什么是直方图呢?通过直方图你可以对整幅图像的灰度分布有一个整体的了解.直方图的 x 轴是灰度值(0 到 255),y 轴是图片中具有同一个灰度值的点
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (六)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 23 图像变换 23.1 傅里叶变换目标本小节我们将要学习: • 使用 OpenCV 对图像进行傅里叶变换 • 使用 Numpy 中 FFT(快速傅里叶变换)函数 • 傅里叶变换的一些用处 • 我们将要学习的函数有:cv2.dft(),cv2.idft() 等原理 傅里叶变换经常被用来分析不同滤波器的频率特性.我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性.实现 DFT 的一个快速算法被称
[OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (二)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里
如何查找MySQL中查询慢的SQL语句
如何查找MySQL中查询慢的SQL语句 更多 如何在mysql查找效率慢的SQL语句呢?这可能是困然很多人的一个问题,MySQL通过慢查询日志定位那些执行效率较低的SQL 语句,用--log-slow-queries[=file_name]选项启动时,mysqld 会写一个包含所有执行时间超过long_query_time 秒的SQL语句的日志文件,通过查看这个日志文件定位效率较低的SQL .下面介绍MySQL中如何查询慢的SQL语句 一.MySQL数据库有几个配置选项可以帮助我们及时捕获低效S
opencv中的vs框架中的Blob Tracking Tests的中文注释。
经过2天的努力终于算是大概弄清楚了opencv中的vs框架是大概是如何工作的了,下面贴一下我自己写的代码注释.非常详细.对初学者有帮助.尤其详细分析了RunBlobTrackingAuto()函数,在看注释之前应该首先大概了解一下 Blob Tracking Tests和Blob Tracking Modules的说明文档.这样比较容易理解.说明文档的位置在 opencv的安装位置的opencv\doc\vidsurv 代码注释为本人原创,转载请注明原为地址:http://blog.csdn.
[OpenCV-Python] OpenCV 中摄像机标定和 3D 重构 部分 VII
部分 VII摄像机标定和 3D 重构 OpenCV-Python 中文教程(搬运)目录 42 摄像机标定 目标 • 学习摄像机畸变以及摄像机的内部参数和外部参数 • 学习找到这些参数,对畸变图像进行修复 42.1 基础 今天的低价单孔摄像机(照相机)会给图像带来很多畸变.畸变主要有两种:径向畸变和切想畸变.如下图所示,用红色直线将棋盘的两个边标注出来,但是你会发现棋盘的边界并不和红线重合.所有我们认为应该是直线的也都凸出来了.你可以通过访问Distortion (optics)获得更多相关细节.
OpenCV中cv2的用法
一.读入图像 使用函数cv2.imread(filepath,flags)读入一副图片 filepath:要读入图片的完整路径 flags:读入图片的标志 cv2.IMREAD_COLOR:默认参数,读入一副彩色图片,忽略alpha通道 cv2.IMREAD_GRAYSCALE:读入灰度图片 cv2.IMREAD_UNCHANGED:顾名思义,读入完整图片,包括alpha通道 import cv2 img = cv2.imread('1.jpg',cv2.IMREAD_GRAYSCALE) 二
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (三)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 19 Canny 边缘检测 目标 • 了解 Canny 边缘检测的概念 • 学习函数 cv2.Canny() 19.1 原理 Canny 边缘检测是一种非常流行的边缘检测算法,是 John F.Canny 在1986 年提出的.它是一个有很多步构成的算法,我们接下来会逐步介绍. 19.1.1 噪声去除 由于边缘检测很容易受到噪声影响,所以第一步是使用 5x5 的高斯滤波器去除噪声,这个前面我们已经学过了. 1
[OpenCV-Python] OpenCV 中的图像处理 部分 IV (四)
部分 IVOpenCV 中的图像处理 OpenCV-Python 中文教程(搬运)目录 21 OpenCV 中的轮廓 21.1 初识轮廓目标 • 理解什么是轮廓 • 学习找轮廓,绘制轮廓等 • 函数:cv2.findContours(),cv2.drawContours() 21.1.1 什么是轮廓 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同.的颜色或者灰度.轮廓在形状分析和物体的检测和识别中很有用. • 为了更加准确,要使用二值化图像.在寻找轮廓之前,要进行阈值化处理.或
[OpenCV-Python] OpenCV 中图像特征提取与描述 部分 V (一)
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图
[OpenCV-Python] OpenCV 中机器学习 部分 VIII
部分 VIII机器学习 OpenCV-Python 中文教程(搬运)目录 46 K 近邻(k-Nearest Neighbour ) 46.1 理解 K 近邻目标 • 本节我们要理解 k 近邻(kNN)的基本概念.原理 kNN 可以说是最简单的监督学习分类器了.想法也很简单,就是找出测试数据在特征空间中的最近邻居.我们将使用下面的图片介绍它. 上图中的对象可以分成两组,蓝色方块和红色三角.每一组也可以称为一个 类.我们可以把所有的这些对象看成是一个城镇中房子,而所有的房子分别属于蓝色和红色家族,
(4opencv)对OpenCV中“旋转”的思考和实验
我记得曾经有人对OpenCV的旋转吐槽,意思是它自己没有很好的关于选择的算法.在新的版本里面添加了这些函数(我还没有时间去看是什么时候pr的).现在一个比较棘手的问题,就是OpenCV中旋转是如何定量的,什么是正方向?什么是负方向?什么时候用角度?什么时候用弧度? 下面就是针对这几个问题,通过查资料.做实验的方式搞清楚. 一.OpenCV中旋转式如何定量的 也就是坐标系问题.OpenCV坐标系以(0,0)点为原点,以向下为Y轴正方向,以向右为X轴正方向. 对于旋转而言,通过"旋转中点&
keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)
引自:http://blog.csdn.net/sinat_26917383/article/details/72859145 中文文档:http://keras-cn.readthedocs.io/en/latest/ 官方文档:https://keras.io/ 文档主要是以keras2.0. . . Keras系列: 1.keras系列︱Sequential与Model模型.keras基本结构功能(一) 2.keras系列︱Application中五款已训练模型.VGG16框架(Seq
OpenCV中Kinect的使用(1)
图像处理中一般为了更好的获取外部信息都会使用到Kinect,其优势在于除了传统的RGB摄像头之外,还拥有一个获取深度信息的3D深度感应器,因此可以获得外界物体的3维信息实现物体的跟踪.手势识别等各项功能.更详细的介绍可参考:身體就是控制器,微軟Kinect是怎麼做到的? 下面介绍OpenCV中Kinect的一些简单的使用方法. Kinect驱动的安装 这里选择PrimeSense公司的OpenNI系列(开源+多平台64+32),主要由三部分组成(从底层到高层):PrimeSenser驱动(底层驱
热门专题
sourceinsight-scan下载
系统吞吐量(TPS)、用户并发量、性能测试概念和公式
squid 4 帐号密码为什么没效
python unittest跳过用例
r subset函数
sqlite 时间 减
linux命令怎么向windows传文件
如何更准确的写出子查询
excel怎么样将同一个表格内数字提取出来
谷歌浏览器怎么看浏览器中登录过得密码
latex 左右引号
winmysql增量备份
html 鈥淐ONTENT="no-cache
webservice服务端密码加密启动
net6连接mongodb
怎样在谷歌控制台添加js代码
Androidstudio 3.5.3下载
linux中为什么要安装gcc c
c# data转json
ext.net表格控件