作者:凯鲁嘎吉 - 博客园http://www.cnblogs.com/kailugaji/ 三.实验程序 五.解答(按如下顺序提交电子版) 1.(程序) (1)LU分解源程序: function [l,u]=lu12(a,n) for k=1:n-1 for i=k+1:n a(i,k)=a(i,k)/a(k,k); for j=k+1:n a(i,j)=a(i,j)-a(i,k)*a(k,j); end end end l=eye(n); u=zeros(n,n); for k=1:n fo
一种矩阵运算方法,又叫Cholesky分解.所谓平方根法,就是利用对称正定矩阵的三角分解得到的求解对称正定方程组的一种有效方法.它是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解.它要求矩阵的所有特征值必须大于零,故分解的下三角矩阵的对角元也是大于零的. https://en.wikipedia.org/wiki/Positive-definite_matrix In linear algebra, a symmetric {\displaystyle n} × {\displa
MATLAB中求矩阵非零元的坐标: 方法1: index=find(a); [i,j]=ind2sub(size(a),index); disp([i,j]) 方法2: [i,j]=find(a>0|a<0) %列出所有非零元的坐标 [i,j]=find(a==k) %找出等于k值的矩阵元素的坐标 所用函数简介: IND2SUB Multiple subscripts from linear index. IND2SUB is used to determine the equivalent
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD
求矩阵的模: function count = juZhenDeMo(a,b) [r,c] = size(a);%求a的行列 [r1,c1] = size(b);%求b的行列 count = 0; for j=1:r-r1+1%所求的行数中取 for i=1:c-c1+1%所有的列数中取 d = a(j:j+r1-1,i:i+c1-1); e = double(d==b); if(sum(e(:))==r1*c1) count = count + 1; end end end<pre name=
Cholesky decomposition In linear algebra, the Cholesky decomposition or Cholesky is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和
29 [程序 29 求矩阵对角线之和] 题目:求一个 3*3 矩阵对角线元素之和 程序分析:利用双重 for 循环控制输入二维数组,再将 a[i][i]累加后输出. package cskaoyan; public class cskaoyan29 { @org.junit.Test public void diagonal() { java.util.Scanner in = new java.util.Scanner(System.in); int[][] arr = new int[3][
"QR_H.m" function [Q,R] = QR_tao(A) %输入矩阵A %输出正交矩阵Q和上三角矩阵R [n,n]=size(A); E = eye(n); X = zeros(n,); R = zeros(n); P1 = E; :n- s = -sign(A(k,k))*norm(A(k:n,k)); R(k,k) = -s; w = [A(,)+s,A(:n,k)']'; else w = [zeros(,k-),A(k,k)+s,A(k+:n,k)']'; R(: