ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import numpy as np import tensorflow as tf import tflearn from matplotlib import pyplot as plt import sea
参考:https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py 代码: print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import Isolation
Most statistical approaches to outlier detection are based on building a probability distribution model and considering how likely objects are under that model. Probalistic Definition of an Outlier: An outlier is an object that has a low probability
Isolation,意为孤立/隔离,是名词,其动词为isolate,forest是森林,合起来就是“孤立森林”了,也有叫“独异森林”,好像并没有统一的中文叫法.可能大家都习惯用其英文的名字isolation forest,简称iForest . iForest适用于连续数据(Continuous numerical data)的异常检测,将异常定义为“容易被孤立的离群点(more likely to be separated)”——可以理解为分布稀疏且离密度高的群体较远的点.用统计学来解释,在