使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi Tian1, Gordon K. Smyth4 and Matthew E. Ritchie5 1The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbo
文献:Sahraeian S M E, Mohiyuddin M, Sebra R, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis[J]. Nature Communications, 2017, 8(1):59. 这是一篇在NC上发表的使用RNAseq工具对比的一篇文献,解读这篇文献对我们使用RNAseq
与之对应的是single cell RNA-Seq,后面也会有类似文章. 参考:https://github.com/xuzhougeng/Learn-Bioinformatics/ 作业:RNA-seq基础入门传送门 资料:RNA-seq Data Analysis-A Practical Approach(2015) Bioinformatic Data Skill biostar handbook A survey of best practices for RNA-seq data an
之间介绍过annovar进行对snp注释,今天介绍snpEFF SnpEff is a variant annotation and effect prediction tool. It annotates and predicts the effects of variants on genes 详细的说明请阅读: http://snpeff.sourceforge.net/SnpEff_manual.html 一.安装 1 wget http://sourceforge.net/projec
使用tophat和cufflinks计算RNA-seq数据的表达水平时,当一个基因在一个样本中有多个表达水平时需要合并它们的表达水平. This code is a solution to collapsing duplicate FPKMs for a gene. CollapseFPKM This code is a solution to collapsing duplicate FPKMs for a gene Problem/Issue: In the cufflinks output
译者注: 原文作者是 Jay Kreps,也是那篇著名的<The Log: What every software engineer should know about real-time data's unifying abstraction>的作者. 本文是意译为主,非逐字翻译,因此同原文的差异略大.欢迎原著爱好者们阅读原文.此文后面有一些对 Samza 的软广告,此处就忽略了. 大多数开发者已经习惯了无状态服务的理念,倾向于将所有数据存放在远端数据库中,难以理解流式计算中为何需要「局部状