首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
弗洛伊德算法 Python
2024-11-10
[Python] 弗洛伊德(Floyd)算法求图的直径并记录路径
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两点间的最短路径算法,称为多源最短路径算法. 常用的路径算法有: Dijkstra算法 SPFA算法\Bellman-Ford算法 Floyd算法\Floyd-Warshall算法 Johnson算法 其中最经典的是Dijkstra算法和Floyd算法.Floyd算法是多源最短路径算法,可以直接求出图
Floyd算法(弗洛伊德算法)
算法描述: Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法.从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1):又用同样地公式由D(1)构造出D(2):……:最后又用同样的公式由D(n-1)构造出矩阵D(n).矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径. 核心思路:通过一个图
数据结构C语言版 弗洛伊德算法实现
/* 数据结构C语言版 弗洛伊德算法 P191 编译环境:Dev-C++ 4.9.9.2 */ #include <stdio.h>#include <limits.h> #define MAX_NAME 5 // 顶点字符串的最大长度+1#define MAX_INFO 20 // 相关信息字符串的最大长度+1typedef int VRType; // 顶点关系的数据类型#define INFINITY INT_MAX // 用整型最大值代替∞#define MA
pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个
常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,,] test_val1 = test_val2 = ): length = len(array) : : ): ]: array[i],array[i+] = array[i+],array[i] length -= : : ): ]: array[i],arra
经典问题----最短路径(Floyd弗洛伊德算法)(HDU2066)
问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre
kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(m*n)kmp算法保证了时间复杂度为O(m+n) 基本原理 举个例子:发现x与c不同后,进行移动a与x不同,再次移动此时比较到了c与y, 于是下一步移动成了下面这样这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后
弗洛伊德算法Floyed(求各顶点间最短路径):可打印最短路径
#include <iostream> #include <string> #include <iomanip> using namespace std; #define INFINITY 65535 #define MAX_VERTEX_NUM 10 typedef struct MGraph{ string vexs[10];//顶点信息 int arcs[10][10];//邻接矩阵 int vexnum, arcnum;//顶点数和边数 }MGraph; int
js图的数据结构处理---弗洛伊德算法
function Graph() { this.graph = [ [0, 2, 4, 0, 0, 0], [0, 0, 1, 4, 2, 0], [0, 0, 0, 0, 3, 0], [0, 0, 0, 0, 0, 2], [0, 0, 0, 3, 0, 2], [0, 0, 0, 0, 0, 0] ]; var vertices = ["A","B","C","D","E","F"
弗洛伊德算法(Floyd算法)
原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 基本思想 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离. 假设图G中顶点个数为N,
图(最短路径算法————迪杰斯特拉算法和弗洛伊德算法).RP
文转:http://blog.csdn.net/zxq2574043697/article/details/9451887 一: 最短路径算法 1. 迪杰斯特拉算法 2. 弗洛伊德算法 二: 1. 迪杰斯特拉算法 求从源点到其余各点的最短路径 依最短路径的长度递增的次序求得各条路径 路径长度最短的最短路径的特点: 在这条路径上,必定只含一条弧,并且这条弧的权值最小. 下一条路径长度次短的最短路径的特点: 它只可能有两种情况:或是直接从源点到该点(只含一条弧):或者是从源点经过顶点v1,再到达该顶
KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以这样初始化: 之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致.如果一致就都向后移动,如果不一致,如下图: A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤: 因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道
压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IRLS(iteratively reweighted least squares)算法 (本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快) IRLS(iteratively reweighte
压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 Orthogonal Least Squares (OLS)算法流程 实验 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本
压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 算法流程 算法分析 python代码 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本为1.10.4) scipy pyth
压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IHT(iterative hard thresholding )算法是压缩感知中一种非常重要的贪婪算法,它具有算法简单的有点,且易于实现,在实际中应用较多.本文给出了IHT算法的python和matlab代码(本文给
压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多.本文给出了SP算法的python和matlab代码,以及完整的仿真过程. 参考文献:
压缩感知重构算法之OMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 本文主要简单介绍了利用python代码实现压缩感知的过程. 压缩感知简介 [具体可以参考这篇文章] 假设一维信号x长度为N,稀疏度为K.Φ 为大小M×N矩阵(M<<N).y=Φ×x为长度M的一维测量值.压缩感知问题就
[从今天开始修炼数据结构]图的最短路径 —— 迪杰斯特拉算法和弗洛伊德算法的详解与Java实现
在网图和非网图中,最短路径的含义不同.非网图中边上没有权值,所谓的最短路径,其实就是两顶点之间经过的边数最少的路径:而对于网图来说,最短路径,是指两顶点之间经过的边上权值之和最少的路径,我们称路径上第一个顶点是源点,最后一个顶点是终点. 我们讲解两种求最短路径的算法.第一种,从某个源点到其余各顶点的最短路径问题. 1,迪杰斯特拉(Dijkstra)算法 迪杰斯特拉算法是一个按路径长度递增的次序产生最短路径的算法,每次找到一个距离V0最短的点,不断将这个点的邻接点加入判断,更新新加入的点到V0的距
数据结构与算法-Python/C(目录)
第一篇 基本概念 01 什么是数据结构 02 什么是算法 03 应用实例-最大子列和问题 第二篇 线性结构 01 线性表及其实现 02 堆栈 03 队列 04 应用实例-多项式加法运算 05 小白专场-多项式乘法与加法运算-c语言实现 05 小白专场-多项式乘法与加法运算-python语言实现 第三篇 树(上) 01 树与树的表示 02 二叉树及存储结构 03 二叉树的遍历 04 小白专场-树的同构-c语言实现 04 小白专场-树的同构-python语言实现 第三篇 树(中) 01 二叉搜索树
弗洛伊德算法(Floyd )
package com.rao.graph; /** * @author Srao * @className Floyd * @date 2019/12/11 18:43 * @package com.rao.graph * @Description 弗洛伊德算法 */ public class Floyd { final static int INF = Integer.MAX_VALUE; /** * 弗洛伊德算法 * @param matrix */ public static void
热门专题
ad exchange 接口
electron怎么让页面可以访问文件系统
js写自定义事件 event .dispatch
JavaScript 键值对集合中的最大最小值
java获取根目录下的文件
OpenWRT解决因PPPOE丢包导致频繁掉线问题
Verilog 阻塞 非阻塞 综合 电路
IDEA 查看变量 在哪个数据区域
php sqlite 返回JSON
idea连接mongodb超时
java数据库的数据如何到成word
elementui 选中过后清空 按下键选中不了
html5 video 透明通道MP4
MACOS10.14 安装OBS
解决github访问速度慢知乎
linux git 升级
登录名、数据库用户名、数据
执行swag init后path没有更新
students文本文件
m支持13频道的wifi地区