首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
张量处理器 激活 池化
2024-09-03
学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有不同类弄卷积层卷积运算.tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积层输入,创建遵循Inception架构网络 Rethinking the Inception Architecture for Computer Vision https://arxiv.org/ab
深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别 分类 相似图像搜索 目标识别 语义分割 卷积神经网络与神经网络的形状对比, 卷积是有厚度的 卷积在提取特征时的图像变化,从刚开始较低水平的特征图,到最后较高水平的特征图的变化,原先提取的是图片的特征,后面提取到的是一些高级的分类特征 1.
MinkowskiPooling池化(上)
MinkowskiPooling池化(上) 如果内核大小等于跨步大小(例如kernel_size = [2,1],跨步= [2,1]),则引擎将更快地生成与池化函数相对应的输入输出映射. 如果使用U网络架构,请使用相同功能的转置版本进行上采样.例如pool = MinkowskiSumPooling(kernel_size = 2,stride = 2,D = D),然后使用 unpool = MinkowskiPoolingTranspose(kernel_size = 2,stride =
[PyTorch 学习笔记] 3.3 池化层、线性层和激活函数层
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/nn_layers_others.py 这篇文章主要介绍了 PyTorch 中的池化层.线性层和激活函数层. 池化层 池化的作用则体现在降采样:保留显著特征.降低特征维度,增大 kernel 的感受野. 另外一点值得注意:pooling 也可以提供一些旋转不变性. 池化层可对提取到的特征信息进行降维,一方面使特征图变小,简化网络计算复杂度并在一定程度上避
第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视
Keras深度神经网络算法模型构建【输入层、卷积层、池化层】
一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式. 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源码 def Input(shape=None, batch_shape=None, name=None, dtype=None, sparse=False, tensor=None): if not batch_shape and tensor is None: assert shape
Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化
图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接相连).但是大图像,这个将会变得很耗时:比如96*96的图像,若采用全连接方式,需要96*96个输入单元,然后如果要训练100个特征,只这一层就需要96*96*100个参数(W,b),训练时间将是前面的几百或者上万倍.所以这里用到了部分联通网络.对于图像来说,每个隐含单元仅仅连接输入图像的一小片相邻
对象池化技术 org.apache.commons.pool
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率.Jakarta Commons Pool组件提供了一整套用于实现对象池化的框架,以及若干种各具特色的对象池实现,可以有效地减少处理对象池化时的工作量,为其它重要的工作留下更多的精力和时间.创建新的对象并初始化的操作,可能会消耗很多的时间.在这种对象的初始化工作包含了一些费时的操作(例如,从一台位于20,000千米以外的主机上读出一些数据)的时候,尤其是这样.在需要大量生成这样的对象的时候,就可能会对性能造成一些不
tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None ) inputs: 进行池化的数据. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]
第十三节,使用带有全局平均池化层的CNN对CIFAR10数据集分类
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在
TensorFlow池化层-函数
池化层的作用如下-引用<TensorFlow实践>: 池化层的作用是减少过拟合,并通过减小输入的尺寸来提高性能.他们可以用来对输入进行降采样,但会为后续层保留重要的信息.只使用tf.nn.conv2d来减小输入的尺寸也是可以的,但是池化层的效率更高. 常见的TensorFlow提供的激活函数如下:(详细请参考http://www.tensorfly.cn/tfdoc/api_docs/python/nn.html) 1.tf.nn.max_pool(value, ksize, strides,
『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷
CNN中的池化层的理解和实例
池化操作是利用一个矩阵窗口在输入张量上进行扫描,并且每个窗口中的值通过取最大.取平均或其它的一些操作来减少元素个数.池化窗口由ksize来指定,根据strides的长度来决定移动步长.如果strides都是1,每个矩阵窗口都将被使用,如果strides的值都是2,那么每一维度上的窗口每隔1个被使用. 举例: tf.nn.avg_pool(value, ksize, strides, padding, name=None) 功能:计算池化区域中元素的平均值 输入参数: value:一个四维的Ten
tf.nn的conv2d卷积与max_pool池化
tf.nn.conv2d(value,filter,strides,[...]) 对于图片来说 value : 形状通常是np.array()类型的4维数组也称tensor(张量), (batch,height,width,channels) 可以理解为(图片样本的个数,高,宽,图片的颜色通道数) value是待卷积的数据 filter: 卷积核 -4元素元组[height,width,in_channels,out_channels],前面的3个参数和value的后面3个参数一一对应.但
深度学习面试题11:池化(same池化、valid池化、带深度的池化)
目录 Same最大值池化 多深度的same池化 Same平均值池化 Valid池化 参考资料 池化(Pooling)操作与卷积类似,取输入张量的每个位置的矩形领域内的最大值或平均值作为该位置的输出. 池化操作分为same池化和valid池化,同时还可以设置移动的步长 Same最大值池化 举例:4行4列的张量x和2行3列的掩码进行步长为1的same最大值池化,其过程如下 池化的结果是 返回目录 多深度的same池化 多深度的same池化是在每个深度上分别进行池化操作. 举例:3行3列2深度的张量和
卷积和池化的区别、图像的上采样(upsampling)与下采样(subsampled)
1.卷积 当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去.特别是,我们可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值. 下面给出一个具体的例子:假设你已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的.为了得到
CNN中卷积层 池化层反向传播
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小. b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是
【DeepLearning】基本概念:卷积、池化、Backpropagation
终于有了2个月的空闲时间,给自己消化沉淀,希望别有太多的杂事打扰.在很多课程中,我都学过卷积.池化.dropout等基本内容,但目前在脑海中还都是零散的概念,缺乏整体性框架,本系列博客就希望进行一定的归纳和梳理,谋求一个更清晰的思路. ## Outline 卷积 tensorflow-conv 池化 tensorflow-pooling 反向传播 梯度消散和梯度爆炸 ## Notes [卷积(Convolution)] 卷积的目的就是从原始数据中提取出特征,过程是利用卷积核(kernel)按照下
commons-pool2 池化技术探究
一.前言 我们经常会接触各种池化的技术或者概念,包括对象池.连接池.线程池等,池化技术最大的好处就是实现对象的重复利用,尤其是创建和使用大对象或者宝贵资源(HTTP连接对象,MySQL连接对象)等方面的时候能够大大节省系统开销,对提升系统整体性能也至关重要. 在并发请求下,如果需要同时为几百个query操作创建/关闭MySQL的连接或者是为每一个HTTP请求创建一个处理线程或者是为每一个图片或者XML解析创建一个解析对象而不使用池化技术,将会给系统带来极大的负载挑战. 本文主要是分析common
热门专题
虚拟机kali找不到无线网卡
Newtonsoft null值赋值空字符串
tomcat 设置metaspacesize
只能是指定符号和字母的表达式
win10 安装ado
使用 LaTeX 画图
tcp 第三次握手序列号
MIPI LCD液晶屏规格书
MySQL的binlog文件存放再哪
kaplan-meier分析的用途
beatifulsoup锚文本
audio标签播放.silk格式
WPF 画面传参和返回
rocksdb get测试代码
redis 存入map时序列化
从安全的角度考虑,标准广播有序广播
petalinux config 没有保存会有影响吗
matlab怎么load txt
全球的MOD13Q1数据在哪找
hive查数据量的方法