首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
循环神经网络 C语言
2024-11-04
基础篇|一文搞懂RNN(循环神经网络)
基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只要训练数据足够,给定特定的x,就能得到希望的y,结构图如下: 将神经网络模型训练好之后,在输入层给定一个x,通过网络之后就能够在输出层得到特定的y,那么既然有了这么强大的模型,为什么还需要RNN(循环神经网络)呢? 为什么需要RNN(循环神经网络) 他们都只能单独的取处理一个个的输入,前一个输入
循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)
循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解. 循环神经网络(Recurrent Neural Networks,RNNs)已经在众多自然语言处理(Natural Language Proce
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心 个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在
第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线
Recurrent Neural Networks(RNN) 循环神经网络初探
1. 针对机器学习/深度神经网络“记忆能力”的讨论 0x1:数据规律的本质是能代表此类数据的通用模式 - 数据挖掘的本质是在进行模式提取 数据的本质是存储信息的介质,而模式(pattern)是信息的一种表现形式.在一个数据集中,模式有很多不同的表现形式,不管是在传统的机器学习训练的过程,还是是深度学习的训练过程,本质上都是在进行模式提取. 而从信息论的角度来看,模式提取也可以理解为一种信息压缩过程,通过将信息从一种形式压缩为另一种形式.压缩的过程不可避免会造成信息丢失. 笔者这里列举几种典型的体
循环神经网络(Recurrent Neural Networks, RNN)介绍
目录 1 什么是RNNs 2 RNNs能干什么 2.1 语言模型与文本生成Language Modeling and Generating Text 2.2 机器翻译Machine Translation 2.3 语音识别Speech Recognition 2.4 图像描述生成 Generating Image Descriptions 3 如何训练RNNs 4 RNNs扩展和改进模型 4.1 Simple RNNsSRNs2 4.2 Bidirectional RNNs3 4.3 DeepB
『cs231n』循环神经网络RNN
循环神经网络 循环神经网络介绍摘抄自莫凡博士的教程 序列数据 我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的时候, 我们也都只单单基于单个的数据. 每次使用的神经网络都是同一个 NN. 不过这些数据是有关联 顺序的 , 就像在厨房做菜, 酱料 A要比酱料 B 早放, 不然就串味了. 所以普通的神经网络结构并不能让 NN 了解这些数据之间的关联. 处理序列数据的神经网络 那我们如何让数据间的关联也被 NN
[DeeplearningAI笔记]序列模型1.5-1.6不同类型的循环神经网络/语言模型与序列生成
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.5不同类型的循环神经网络 上节中介绍的是 具有相同长度输入序列和输出序列的循环神经网络,但是对于很多应用\(T_{x}和T_{y}\)并不一定相等. 在此节会介绍不同的能够处理不同问题的循环神经网络. 多对多循环神经网络 对于命名实体识别的问题中,RNN的输出和输入序列长度一致--\(T_{x}=T_{y}\). 则在每读一个单词时都输出预测的值\(\hat{y}\) 这是一个典型的多对多的问题. 多对一循环神经网络
TensorFlow学习笔记(六)循环神经网络
一.循环神经网络简介 循环神经网络的主要用途是处理和预测序列数据.循环神经网络刻画了一个序列当前的输出与之前信息的关系.从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面节点的输出. 下图展示了一个典型的循环神经网络. 循环神经网络的一个重要的概念就是时刻.上图中循环神经网络的主体结构A的输入除了来自输入层的Xt,还有一个自身当前时刻的状态St. 在每一个时刻,A会读取t时刻的输入Xt,并且得到一个输出Ht.同时还会得到一个当前时刻的状态St,传递给下一时刻t+1. 因此,循环
用tensorflow实现自然语言处理——基于循环神经网络的神经语言模型
自然语言处理和图像处理不同,作为人类抽象出来的高级表达形式,它和图像.声音不同,图像和声音十分直觉,比如图像的像素的颜色表达可以直接量化成数字输入到神经网络中,当然如果是经过压缩的格式jpeg等必须还要经过一个解码的过程才能变成像素的高阶矩阵的形式,而自然语言则不同,自然语言和数字之间没有那么直接的相关关系,也就不是那么容易作为特征输入到神经网络中去了,所以,用神经网络处理自然语言,不可避免的在数据预处理方面更加繁琐,也更加细致!自然语言处理的另外一个不同之处在于语言之间的相关关系,举一个最简单
大话循环神经网络(RNN)
在上一篇文章中,介绍了 卷积神经网络(CNN)的算法原理,CNN在图像识别中有着强大.广泛的应用,但有一些场景用CNN却无法得到有效地解决,例如: 语音识别,要按顺序处理每一帧的声音信息,有些结果需要根据上下文进行识别: 自然语言处理,要依次读取各个单词,识别某段文字的语义 这些场景都有一个特点,就是都与时间序列有关,且输入的序列数据长度是不固定的. 而经典的人工神经网络.深度神经网络(DNN),甚至卷积神经网络(CNN),一是输入的数据维度相同,另外是各个输入之间是独立的,每层神经元的信号
TensorFlow框架(6)之RNN循环神经网络详解
1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主要用途是处理和预测序列数据.全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的. 图 11 RNN-rolled 如图 11所示是一个典型的循环神经网络.对于循环神经网络,一个非常重要的概念就是时刻.循环神经网
循环神经网络(RNN, Recurrent Neural Networks)介绍
原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Networks)介绍 这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/,在这篇文章中,加入了一些新的内容与一些自己的理解. 循环神经网
循环神经网络(Recurrent Neural Network)
传统的神经网络模型,隐藏层的节点之间是无连接的,如下图所示. 而循环神经网络隐藏层的节点之间有连接,主要用于对序列数据进行分类.预测等处理.有连接意味着需要接受信息,这种网络通常用来对序列数据进行处理. 隐藏层的输入不仅包括输入层的输出还包括上一时刻隐藏层的输出,即网络会对之前时刻的信息进行记忆,并应用于当前的输出计算中.RNN可以处理的序列结构有以下几种: 第一个多对多,例如词性标注,输入为一句话,输出为各个词对应的词性. 第二个为多对一,例如一段话的情感标注. 第三个多对多,为非同步的序列输
用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)
Google TensorFlow程序员点赞的文章! 前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with nx
L9循环神经网络进阶 ModernRNN
GRU RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT) ⻔控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系 RNN: Ht=ϕ(XtWxh+Ht−1Whh+bh) H_{t} = ϕ(X_{t}W_{xh} + H_{t-1}W_{hh} + b_{h}) Ht=ϕ(XtWxh+Ht−1Whh+bh) GRU: Rt=σ(XtWxr+Ht−1Whr+br)Zt=σ(XtWxz+Ht−1Whz+bz)H~t=tanh(XtWxh+(Rt⊙Ht−1)Whh+bh)Ht=Zt
深度学习四从循环神经网络入手学习LSTM及GRU
循环神经网络 简介 循环神经网络(Recurrent Neural Networks, RNN) 是一类用于处理序列数据的神经网络.之前的说的卷积神经网络是专门用于处理网格化数据(例如一个图像)的神经网络,而循环神经网络专门用于处理序列数据(例如\(x^{(1)},x^{(2)},···,x^{(T)},\))的神经网络. 应用场景 一些要求处理序列输入的任务,例如: 语音识别(speech recognition) 时间序列预测(time series prediction) 机器翻译(mac
4.5 RNN循环神经网络(recurrent neural network)
自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取: https://www.cnblogs.com/bclshuai/p/11380657.html 1.1 RNN循环神经网络(recurrent neural network) 1.1.1 RNN简介 RNN循环神经网络会循环的加入上一时刻的状态作为输入,得出下一时刻的输出.解决的是具有时序关联性的问题,例如股票趋势预测,需要上一时刻的股票价格输入作为下一时刻的输出,又比如输入预测,当你输入I am s
Recurrent Neural Network系列1--RNN(循环神经网络)概述
作者:zhbzz2007 出处:http://www.cnblogs.com/zhbzz2007 欢迎转载,也请保留这段声明.谢谢! 本文翻译自 RECURRENT NEURAL NETWORKS TUTORIAL, PART 1 – INTRODUCTION TO RNNS . Recurrent Neural Networks(RNNS) ,循环神经网络,是一个流行的模型,已经在许多NLP任务上显示出巨大的潜力.尽管它最近很流行,但是我发现能够解释RNN如何工作,以及如何实现RNN的资料很少
Recurrent Neural Network(循环神经网络)
Reference: Alex Graves的[Supervised Sequence Labelling with RecurrentNeural Networks] Alex是RNN最著名变种,LSTM发明者Jürgen Schmidhuber的高徒,现加入University of Toronto,拜师Hinton. 统计语言模型与序列学习 1.1 基于频数统计的语言模型 NLP领域最著名的语言模型莫过于N-Gram. 它基于马尔可夫假设,当然,这是一个2-Gram(Bi-Gram)模
循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不
热门专题
阿里巴巴sentinel使用
layui自定义滚动条
vue整合bpmn.js
viewdatabinding在View中使用
c语言squeeze函数
mybatis-plus的xml判断集合大小
通过nginx 配置 映射本地域名
191.168.网段可设多少静态ip
莫比乌斯反演 约数和
golang select是否有数据
kafka docker访问不到
golang 断开tcp链接
sklearn 梯度下降
C#多线程调用Graphics
c# 通过进程取句柄
vhdl 包verilog package
web前端打印pdf
谷歌浏览器的翻译插件
gerrit关联jira
sql servers英文版新建登录