首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
循环神经网络前向传播
2024-11-04
用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)
Google TensorFlow程序员点赞的文章! 前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with nx
关于 RNN 循环神经网络的反向传播求导
关于 RNN 循环神经网络的反向传播求导 本文是对 RNN 循环神经网络中的每一个神经元进行反向传播求导的数学推导过程,下面还使用 PyTorch 对导数公式进行编程求证. RNN 神经网络架构 一个普通的 RNN 神经网络如下图所示: 其中 \(x^{\langle t \rangle}\) 表示某一个输入数据在 \(t\) 时刻的输入:\(a^{\langle t \rangle}\) 表示神经网络在 \(t\) 时刻时的hidden state,也就是要传送到 \(t+1\) 时刻的值:\
TensorFlow框架(6)之RNN循环神经网络详解
1. RNN循环神经网络 1.1 结构 循环神经网络(recurrent neural network,RNN)源自于1982年由Saratha Sathasivam 提出的霍普菲尔德网络.RNN的主要用途是处理和预测序列数据.全连接的前馈神经网络和卷积神经网络模型中,网络结构都是从输入层到隐藏层再到输出层,层与层之间是全连接或部分连接的,但每层之间的节点是无连接的. 图 11 RNN-rolled 如图 11所示是一个典型的循环神经网络.对于循环神经网络,一个非常重要的概念就是时刻.循环神经网
第十四章——循环神经网络(Recurrent Neural Networks)(第一部分)
由于本章过长,分为两个部分,这是第一部分. 这几年提到RNN,一般指Recurrent Neural Networks,至于翻译成循环神经网络还是递归神经网络都可以.wiki上面把Recurrent Neural Networks叫做时间递归神经网络,与之对应的还有一个结构递归神经网络(recursive neural network).本文讨论的是前者. RNN是一种可以预测未来(在某种程度上)的神经网络,可以用来分析时间序列数据(比如分析股价,预测买入点和卖出点).在自动驾驶中,可以预测路线
循环神经网络与LSTM网络
循环神经网络与LSTM网络 循环神经网络RNN 循环神经网络广泛地应用在序列数据上面,如自然语言,语音和其他的序列数据上.序列数据是有很强的次序关系,比如自然语言.通过深度学习关于序列数据的算法要比两年前的算法有了很大的提升.由此诞生了很多有趣的应用,比如语音识别,音乐合成,聊天机器人,机器翻译,自然语言理解和其他的一些应用. 符号说明: 上标[l]: 表示第层,例如,例如是第四层的激活元.和是层参数 上标(i):表示第i个样本,例如表示第训练样本输入 上标<t>:表示第个时间戳,例如是输入x
TensorFlow系列专题(七):一文综述RNN循环神经网络
欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 前言 RNN知识结构 简单循环神经网络 RNN的基本结构 RNN的运算过程和参数更新 一.前言 前馈神经网络不考虑数据之间的关联性,网络的输出只和当前时刻网络的输入相关.然而在解决很多实际问题的时候我们发现,现实问题中存在着很多序列型的数据,例如文本.语音以及视频等.这些序列型的数据往往都是具有时序上的关联性的,既某一时刻网络的输出除了与当前时刻的输入相关之外,还与之前某
循环神经网络中BFTT的公式推导
一.变量定义 此文是我学习BFTT算法的笔记,参考了雷明<机器学习与应用>中的BFTT算法推导,将该本书若干个推导串联起来,下列所有公式都是结合书和资料,手动在PPT上码的,很费时间,但是也加深了自己的理解. 二.几个预备知识 (1) 乘法⊙为向量对应元素相乘 (2) 复合函数求导: a. 假设有函数,假设有f(y),如果把x看成常数,y看成W的函数,则有: b. 如果将将W看成常数,y将看成x的函数,则有: c. 如果有向量到向量的映射: 对于函数 f(y), 有 三.完整的算法
循环神经网络(RNN)模型与前向反向传播算法
在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系.今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域. 1. RNN概述 在前面讲到的DNN和CNN中,训练样本的输入和输出是比较的确定的.但是有一类问题DNN和CNN不好解决,就是训练样本输入是连续的序列,且序列的长短不
卷积神经网络 cnnff.m程序 中的前向传播算法 数据 分步解析
最近在学习卷积神经网络,哎,真的是一头雾水!最后决定从阅读CNN程序下手! 程序来源于GitHub的DeepLearnToolbox 由于确实缺乏理论基础,所以,先从程序的数据流入手,虽然对高手来讲,这样有点太小儿科了,但觉得对于个人理解CNN网络的结构和数据流走向有较大帮助! 下面,将要分析CNN的前向传播算法cnnff.m 本程序所用的神经网络的结构如下图的结构体net所示 结构体net 包含5层 每层的结构 这五层的结构如下: 每层的结构分别如下: 为了方便自己理解,下面,分别对每一层的输
《神经网络的梯度推导与代码验证》之vanilla RNN的前向传播和反向梯度推导
在本篇章,我们将专门针对vanilla RNN,也就是所谓的原始RNN这种网络结构进行前向传播介绍和反向梯度推导.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 注意: 本系列的关注点主要在反向梯度推导以及代码上的验证,涉及到的前向传播相对而言不会做太详细的介绍. 反向梯度求导涉及到矩阵微分和求导的相关知识,请见<神经网络的梯度推导与代码验证>之数学基础篇:矩阵微分与求导 目录 4.1 vanilla RNN的前向传播 4.2 vanilla RNN的反向梯度推导 4.
深度神经网络(DNN)模型与前向传播算法
深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结. 1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输入之间学习到一个线性关系,得到中间输出结果:$$z=\sum\limits_{i=1}^mw_ix_i + b$$ 接着是一个神经元激活函数: $$sign(z)=\begin{cases}
卷积神经网络(CNN)前向传播算法
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层.这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构.图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我
神经网络,前向传播FP和反向传播BP
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆圈被称为偏置节点,也就是截距项.神经网络最左边的一层叫做输入层,最右的一层叫做输出层(本例中,输出层只有一个节点).中间所有节点组成的一层叫做隐藏层,因为我们不能在训练样本集中观测到它们的值.同时可以看到,以上神经网络的例子中有3个输入单元(偏置单元不计在内),3个隐藏单元及一个输出单元. 我们用
深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播
卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别 分类 相似图像搜索 目标识别 语义分割 卷积神经网络与神经网络的形状对比, 卷积是有厚度的 卷积在提取特征时的图像变化,从刚开始较低水平的特征图,到最后较高水平的特征图的变化,原先提取的是图片的特征,后面提取到的是一些高级的分类特征 1.
1. DNN神经网络的前向传播(FeedForward)
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 神经网络技术起源于上世纪五.六十年代,当时叫感知机(perceptron),拥有输入层.输出层和一个隐含层.输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果.但是,Rosenblatt的单层感知机有一个严重得不能再严重的问题,即它对稍复杂一些的函数都无能为力. 随着数学的发展,这个缺点直到上世纪八十年代才被Rumelhart.Williams.H
Tensorflow笔记——神经网络图像识别(一)前反向传播,神经网络八股
第一讲:人工智能概述 第三讲:Tensorflow框架 前向传播: 反向传播: 总的代码: #coding:utf-8 #1.导入模块,生成模拟数据集 import tensorflow as tf import numpy as np #np为科学计算模块 BATCH_SIZE = 8#表示一次喂入NN多少组数据,不能过大,会噎着 seed = 23455 #基于seed产生随机数 rng = np.random.RandomState(seed) #随机数返回
[DeeplearningAI笔记]序列模型1.3-1.4循环神经网络原理与反向传播公式
5.1循环序列模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.3循环神经网络模型 为什么不使用标准的神经网络 假如将九个单词组成的序列作为输入,通过普通的神经网网络输出输出序列, 在不同的例子中输入数据和输出数据具有不同的长度,即每个数据不会有一样的长度 也许每个语句都有最大长度,能够通过Padding 的方式填充数据,但总体来说不是一个好的表达方式. 不共享从文本的不同位置上学到的特征 例如普通神经网络可以学习到Harry这个单词出现在\(x^{<1>}\)的位置,但是如果
Tensorflow实现神经网络的前向传播
我们构想有一个神经网络,输入为两个input,中间有一个hidden layer,这个hiddenlayer当中有三个神经元,最后有一个output. 图例如下: 在实现这个神经网络的前向传播之前,我们先补充一下重要的知识. 一.权重w以及input的初始化 我们初始化权重w的方法为随机生成这些权重,一般可以使用这些随机生成的数据正好在正态分布的曲线上,这也是最符合生成符合自然规律的随机数生成方法: import tensorflow as tf #一般情况下神经网络上的参数是w的数列,当然我们
《神经网络的梯度推导与代码验证》之FNN(DNN)的前向传播和反向推导
在<神经网络的梯度推导与代码验证>之数学基础篇:矩阵微分与求导中,我们总结了一些用于推导神经网络反向梯度求导的重要的数学技巧.此外,通过一个简单的demo,我们初步了解了使用矩阵求导来批量求神经网络参数的做法.在篇章,我们将专门针对DNN/FNN这种网络结构进行前向传播介绍和反向梯度推导. 注意:本系列的关注点主要在反向梯度推导以及代码上的验证,涉及到的前向传播相对而言不会做太详细的介绍. 目录 2.1 FNN(DNN)的前向传播 2.2 FNN(DNN)的反向传播 2.3 总结 参考资料 2
《神经网络的梯度推导与代码验证》之CNN的前向传播和反向梯度推导
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性.在本篇章,我们将专门针对CNN这种网络结构进行前向传播介绍和反向梯度推导.更多相关内容请见<神经网络的梯度推导与代码验证>系列介绍. 注意: 本系列的关注点主要在反向梯度推导以及代码上的验证,涉及到的前向传播相对而言不会做太详细的介绍. 反向梯度求导涉及到矩阵微分和求导的相关知识,请见<神经网络的梯
热门专题
USB host设备 供电
html怎么在当前页面弹出表单
ubuntu重做系统保留home路径
idea mvc 添加jar包
caddy 共享文件
从git上下载代码到本地
python爬取网页中的表格
C#的单元测试项目如何自动运行出测试结果
ExAllocatePool 需要额外
pygame中文手册
学习python资料
谷歌window.showModalDialog
android edittext hint 太长
python读取grd数据
archlinux要安装的软件
gogs修改admin
西门子上位软件怎么读取kepserver内的数据
c语言 各个键位的宏
verycapture安装选择语言后没有下一步
磁力链接搜索 磁力引擎