一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中,许多系统的输出不仅依赖于当前输入,还与过去一段时间内系统的输出有关,即需要网络保留一定的记忆功能,这就给前馈神经网络提出了巨大的挑战.除此之外,前馈神经网络难以处理时序数据,比如视频.语音等,因为时序数据的序列长度一般是不固定的,而前馈神经网络要求输入.输出的维度都是固定的,不能任意改变.出于这两