首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
怎么提高对cifar10的训练效果
2024-09-06
pytorch识别CIFAR10:训练ResNet-34(数据增强,准确率提升到92.6%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据增强: 1.对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32. 2.按0.5的概率水平翻转图片. 代码具体修改如下: transform_train = transforms.Compose([ # 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪
使用Python基于TensorFlow的CIFAR-10分类训练
TensorFlow Models GitHub:https://github.com/tensorflow/models Document:https://github.com/jikexueyuanwiki/tensorflow-zh CIFAR-10 数据集 Web:http://www.cs.toronto.edu/~kriz/cifar.html 目标:(建立一个用于识别图像的相对较小的卷积神经网络)对一组32x32RGB的图像进行分类 数据集:60000张32*32*3的彩色图片,其
pytorch识别CIFAR10:训练ResNet-34(准确率80%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何凯明2015年提出了残差神经网络,即Reset,并在ILSVRC-2015的分类比赛中获得冠军. ResNet可以有效的消除卷积层数增加带来的梯度弥散或梯度爆炸问题. ResNet的核心思想是网络输出分为2部分恒等映射(identity mapping).残差映射(residual mapping)
Caffe初试(三)使用caffe的cifar10网络模型训练自己的图片数据
由于我涉及一个车牌识别系统的项目,计划使用深度学习库caffe对车牌字符进行识别.刚开始接触caffe,打算先将示例中的每个网络模型都拿出来用用,当然这样暴力的使用是不会有好结果的- -||| ,所以这里只是记录一下示例的网络模型使用的步骤,最终测试的准确率就暂且不论了! 一.图片数据库 来源 我使用的图像是在项目的字符分割模块中分割出来的字符图像,灰度化并归一化至32*64,字符图片样本示例如下: 建立自己的数据文件夹 在./caffe/data/目录下建立自己的数据文件夹mine,并且在mi
pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6. 这里对训练过程增加2个处理: 1.训练数据集做进一步处理:对图片随机加正方形马赛克. 2.每50个epoch,学习率降低0.1倍. 代码具体修改如下: 自定义transform: class Cutout(object): def __init__(self, hole_size): # 正方形马赛克的边长,像素
pytorch识别CIFAR10:训练ResNet-34(微调网络,准确率提升到85%)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的卷积层中用更小(3*3)的卷积核,并且不缩小图片尺寸,相应的最后的平均池化的核改为4*4. 具体修改如下: class ResNet34(nn.Module): def __init__(self, block): super(ResNet34, self).__init__() # 初始卷积层核池
[Python] 波士顿房价的7种模型(线性拟合、二次多项式、Ridge、Lasso、SVM、决策树、随机森林)的训练效果对比
目录 1. 载入数据 列解释Columns: 2. 数据分析 2.1 预处理 2.2 可视化 3. 训练模型 3.1 线性拟合 3.2 多项式回归(二次) 3.3 脊回归(Ridge Regression),又叫岭回归 3.4 Lasso 回归 3.5 支持向量回归 Support Vector Regression 3.6 决策树回归 Decision Tree Regression 3.7 随机森林回归 Random Forest Regression 4. 评估结果汇总 5. 可视化评估结
tensorflow实现最基本的神经网络 + 对比GD、SGD、batch-GD的训练方法
参考博客:https://zhuanlan.zhihu.com/p/27853521 该代码默认是梯度下降法,可自行从注释中选择其他训练方法 在异或问题上,由于训练的样本数较少,神经网络简单,训练结果最好的是GD梯度下降法. # -*- coding:utf-8 -*- # 将tensorflow 引入并命名tf import tensorflow as tf # 矩阵操作库numpy,命名为np import numpy as np ''' 生成数据 用python使用tensorflow时,
24分钟让AI跑起飞车类游戏
本文由云+社区发表 作者:WeTest小编 WeTest 导读 本文主要介绍如何让AI在24分钟内学会玩飞车类游戏.我们使用Distributed PPO训练AI,在短时间内可以取得不错的训练效果. 本方法的特点: 纯游戏图像作为输入 不使用游戏内部接口 可靠的强化学习方法 简单易行的并行训练 1. PPO简介 PPO(Proximal Policy Optimization)是OpenAI在2016年NIPS上提出的一个基于Actor-Critic框架的强化学习方法.该方法主要的创新点是在更新
CNN训练Cifar-10技巧
关于数据集 Cifar-10是由Hinton的两个大弟子Alex Krizhevsky.Ilya Sutskever收集的一个用于普适物体识别的数据集.Cifar是加拿大政府牵头投资的一个先进科学项目研究所. 说白了,就是看你穷的没钱搞研究,就施舍给你.Hinton.Bengio和他的学生在2004年拿到了Cifar投资的少量资金,建立了神经计算和自适应感知项目. 这个项目结集了不少计算机科学家.生物学家.电气工程师.神经科学家.物理学家.心理学家,加速推动了DL的进程.从这个阵容来看,DL已经
行业动态 | 腾讯合作商Babylon使用Cassandra保护患者数据并提高医疗效果
医疗世界正在快速朝向个性化和低成本的方向发展,Babylon Health看到了这样的机会--通过开创性的云端应用来大幅扩张和改进他们所提供的服务. 通过使用基于Apache Cassandra的DSE,Babylon构建了高度个性化并基于移动端的24/7医疗服务,并且能够保护客户的重要数据. "作为一家公司,我们的雄心壮志是能够提高每一个人所接受到的医疗服务.新生的技术对于实现这个目标至关重要,而DataStax则为我们的发展奠定了坚实的基础." --Babylon He
机器学习实验报告:利用3层神经网络对CIFAR-10图像数据库进行分类
PS:这是6月份时的一个结课项目,当时的想法就是把之前在Coursera ML课上实现过的对手写数字识别的方法迁移过来,但是最后的效果不太好… 2014年 6 月 一.实验概述 实验采用的是CIFAR-10 图像数据库,一共包括60000幅32x32 彩色图像.这些图像分为10类,每类6000幅.整个数据库分为五个训练包和一个测试包,每个包一万幅图像,所以一共5万幅训练图像,1万幅测试图像. 测试包中,每个类包括1000幅图像,随机排序.而5个训练包合在一起,每类包括5000幅图像.类的标
DenseNet算法详解——思路就是highway,DneseNet在训练时十分消耗内存
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http://www.yyliu.cn/post/7cabb4ff.html ] CVPR 2017上,清华大学的Zhuang Liu.康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Con
原 CNN--卷积神经网络从R-CNN到Faster R-CNN的理解(CIFAR10分类代码)
1. 什么是CNN 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一. 我们先来看卷积神经网络各个层级结构图: 上图中CNN要做的事情是:给定一张图片,是车还是马未知,是什么车也未知,现在需要模型判断这张图片里具体是一个什么东西,总之输出一个结果:如果是车 那是什么车. 最左边是数据输入层(input
深度学习与CV教程(6) | 神经网络训练技巧 (上)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/265 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末
Abnormal Detection(异常检测)和 Supervised Learning(有监督训练)在异常检测上的应用初探
1. 异常检测 VS 监督学习 0x1:异常检测算法和监督学习算法的对比 总结来讲: . 在异常检测中,异常点是少之又少,大部分是正常样本,异常只是相对小概率事件 . 异常点的特征表现非常不集中,即异常种类非常多,千奇百怪.直白地说:正常的情况大同小异,而异常各不相同.这种情况用有限的正例样本(异常点)给有监督模型学习就很难从中学到有效的规律 0x2:常见的有监督学习检测算法 这块主要依靠庞大的打标样本,借助像DLearn这样的网络对打标训练样本进行拟合 0x3:常见的异常检测算法 基于模型的技
opencv利用Cascade Classifier训练人脸检测器
opencv默认提供了haar特征和lbp特征训练的人脸分类器,但是效果不太好,所以我们可以用opencv提供的跑opencv_traincascade函数来训练一个LBP特征的分类器.(由于opencv3中hog与hog文章定义的不同,因此在opencv3 的opencv_traincascade函数中被删掉了详情) LBP特征 按照官方文档的训练流程: 1. 准备训练数据 首先把正例和负例样本按下面的结构存放: train -pos -- info.dat -- img ---- 1.jpg
计蒜客 31436 - 提高水平 - [状压DP]
题目链接:https://nanti.jisuanke.com/t/31436 作为一名车手,为了提高自身的姿势水平,平时的练习是必不可少的.小 J 每天的训练包含 $N$ 个训练项目,他会按照某个顺序依次练习这些项目.出于一些玄妙的原因,训练的效果跟项目的顺序有着很大关系.当项目 $i$ 被安排在项目 $j$ 之前进行训练,小 J 会获得 $a_{i,j}$ 的熟练度,否则他会获得 $a_{j,i}$ 的熟练度.为了使训练效果尽可能好,小 J 希望这 $\frac{N(N-1)}2$ 对项目的
用python实现数字图片识别神经网络--启动网络的自我训练流程,展示网络数字图片识别效果
上一节,我们完成了网络训练代码的实现,还有一些问题需要做进一步的确认.网络的最终目标是,输入一张手写数字图片后,网络输出该图片对应的数字.由于网络需要从0到9一共十个数字中挑选出一个,于是我们的网络最终输出层应该有十个节点,每个节点对应一个数字.假设图片对应的是数字0,那么输出层网络中,第一个节点应该输出一个高百分比,其他节点输出低百分比,如果图片对应的数字是9,那么输出层最后一个节点应该输出高百分比,其他节点输出低百分比,例如下图: 屏幕快照 2018-05-07 下午5.10.59.png
keras 保存训练的最佳模型
转自:https://anifacc.github.io/deeplearning/machinelearning/python/2017/08/30/dlwp-ch14-keep-best-model-checkpoint/,感谢分享 深度学习模型花费时间大多很长, 如果一次训练过程意外中断, 那么后续时间再跑就浪费很多时间. 这一次练习中, 我们利用 Keras checkpoint 深度学习模型在训练过程模型, 我的理解是检查训练过程, 将好的模型保存下来. 如果训练过程意外中断, 那么我
热门专题
java excel导出 怎么合并单元格并且设置样式
的部署清单签名的证书或其位置不受信任
elasticsearch 启动 指定yml
创建vue2项目 不用eslint
公网记得开放8080端口及重设密码
feign 后端模拟账号
jstat查看堆内存
<img>标记如果没有图片
Java apache文件监听
sql 中 foreach 中传入多个不同的参数
node.js替换文件内容
nginx arm 下载
SELINUX宽松模式是什么意思
富文本编辑器生成的是什么格式的文件
群晖如何远程查看电脑文件
android强制关闭app
jmeter ssh接口
coreldraw2018安装教程
debian9 更换清华源
vim 当前行删到尾行