梯度提升: from sklearn.ensemble import GradientBoostingClassifier gb=GradientBoostingClassifier(random_state=0) gb.fit(x_train,y_train) print("Accuracy on training set:{:.3f}".format(gb.score(x_train,y_train))) print("Accuracy on test set:{:.3f
代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之前,非常有必要了解准备的数据:数据的特征,数据和目标结果之间的关系是什么?而且这可能是机器学习过程中最重要的部分. 在开始使用机器学习实际应用时,有必要先回答下面几个问题: 解决的问题是什么?现在收集的数据能够解决目前的问题吗? 该问题可以转换成机器学习问题吗?如果可以,具体属于哪一类?监督 or 非监督 从
import numpy as np from keras.datasets import boston_housing from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def main(): (train_data, train
Given an array of integers sorted in ascending order, find the starting and ending position of a given target value. Your algorithm's runtime complexity must be in the order of O(log n). If the target is not found in the array, return [-1, -1]. For e