https://vjudge.net/problem/UVA-11768 题意: 给定两个点A(x1,y1)和B(x2,y2),均为0.1的整数倍.统计选段AB穿过多少个整点. 思路: 做了这道题之后对于扩展欧几里得有了全面的了解. 根据两点式公式求出直线 ,那么ax+by=c 中的a.b.c都可以确定下来了. 接下来首先去计算出一组解(x0,y0),因为根据这一组解,你可以写出它的任意解,其中,K取任何整数. 需要注意的是,这个 a' 和 b' 是很重要的,比如说 b' ,它代表的是x每隔 b
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4020 Accepted Submission(s): 3091 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%99
http://poj.org/problem?id=1061 第一遍的写法: #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; long long x,y,m,n,l,j1,j2; long long gcd(long long a,long long b) { ?a:gcd(b,a%b); } void e
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include &l
题目大意:给你两个球的坐标 他们都往(1, 1)这个方向以相同的速度走,问你他们在哪个位置碰撞. 思路:这种题目需要把x方向和y方向分开来算周期,两个不同周期需要用扩展欧几里得来求第一次相遇. #include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define pii pair<int, int> #define y1 skldjfs
传送门 对于数论只会gcd的我,也要下定决心补数论了 列出方程 (x + t * m) % l = (y + t * n) % l 那么假设 这两个式子之间相差 num 个 l,即为 x + t * m = y + t * n + num * l 经过化简得 (n - m) * t + l * num = x - y 那么可以用扩展欧几里得求出结果 ——代码 #include <cstdio> #define LL long long inline void exgcd(LL a, LL b,
题意: 青蛙 A 和 青蛙 B ,在同一纬度按照相同方向跳跃相同步数,A的起点为X ,每一步距离为m,B的起点为Y,每一步距离为 n,一圈的长度为L,求最小跳跃步数. 思路: 一开始按照追击问题来写,结果发现会求出来小数,而且按照追击问题写的话,一圈就能相遇,但是!青蛙的步数可没有小数,而且青蛙是跳跃的,显然不能在空中相遇吧. 所以咧,先列出一个追击的式子 ,设步数为 t ,整数为K(转了K圈以后他们才到同一个地方) t * m + x = t * n + y + k * L ===> t *