首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
批量归一化层在池化层之上吗
2024-09-02
机器学习(ML)十三之批量归一化、RESNET、Densenet
批量归一化 批量归一化(batch normalization)层,它能让较深的神经网络的训练变得更加容易.对图像处理的输入数据做了标准化处理:处理后的任意一个特征在数据集中所有样本上的均值为0.标准差为1.标准化处理输入数据使各个特征的分布相近:这往往更容易训练出有效的模型. 通常来说,数据标准化预处理对于浅层模型就足够有效了.随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变化.但对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的更新依然很容易造成靠近输出层输出
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图
tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflownews.com #!/usr/bin/python # -*- coding: UTF-8 -*- import matplotlib.pyplot as plt import tensorflow as tf from PIL import Image import numpy img = Ima
『TensorFlow』卷积层、池化层详解
一.前向计算和反向传播数学过程讲解
Python3 卷积神经网络卷积层,池化层,全连接层前馈实现
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli """ import numpy as np; def ReLU(x): return max(0,x); def logistic(x): return 1/(1 + np.exp(-x)); def logistic_derivative(x): return logistic(x)*(
CNN-卷积层和池化层学习
卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC (1)卷积层:用它来进行特征提取,如下: 输入图像是32*32*3,3是它的深度(即R.G.B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同.通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图: 我们通常会使用多层卷积层来得到更深层次的特征图.如下: 关于卷积的
Keras深度神经网络算法模型构建【输入层、卷积层、池化层】
一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式. 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1)) 3.源码 def Input(shape=None, batch_shape=None, name=None, dtype=None, sparse=False, tensor=None): if not batch_shape and tensor is None: assert shape
CNN卷积神经网络的卷积层、池化层的输出维度计算公式
卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPooling层的过滤器长宽设为kernel*kernel,则池化层的输出维度也适用于上述公司计算. 具体计算可以AlexNet为例.
吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例
import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[-2]] ]) print("Matrix shape is: ",M.shape) filter_weight = tf.get_variable('weights', [2, 2, 1, 1], initializer = tf.constant_initializer([[1, -1
图像处理池化层pooling和卷积核
1.池化层的作用 在卷积神经网络中,卷积层之间往往会加上一个池化层.池化层可以非常有效地缩小参数矩阵的尺寸,从而减少最后全连层中的参数数量.使用池化层即可以加快计算速度也有防止过拟合的作用. 2.为什么max pooling要更常用? 通常来讲,max-pooling的效果更好,虽然max-pooling和average-pooling都对数据做了下采样,但是max-pooling感觉更像是做了特征选择,选出了分类辨识度更好的特征,提供了非线性,根据相关理论,特征提取的误差主要来自两个方面:(1
[DeeplearningAI笔记]卷积神经网络1.9-1.11池化层/卷积神经网络示例/优点
4.1卷积神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9池化层 优点 池化层可以缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性. 池化层操作 池化操作与卷积操作类似,但是池化操作是保留池化窗口在扫过原始图像中时的最大值.注意:每个信道都在其单独的信道中执行池化操作. 其维度公式也满足公式: \[\lfloor\frac{(n+2p-f)}{s}+1\rfloor*\lfloor\frac{(n+2p-f)}{s}+1\rfloor\] 其中n为原始图像大小,p
ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层
来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter卷积后 得到了 17x17x20的数据 不填充且步长为2的情况下经过5x5的40个filter卷积后 得到了 7x7x40的最终结果 将7x7x40的卷积层全部展开作为输入特征,建立一个输入层单元数为1960的神经网络即可 卷积神经网络常见的结构: 1.Conv卷积层如上图所见 2.Pool池化层
【37】池化层讲解(Pooling layers)
池化层(Pooling layers) 除了卷积层,卷积网络也经常使用池化层来缩减模型的大小,提高计算速度,同时提高所提取特征的鲁棒性,我们来看一下. 先举一个池化层的例子,然后我们再讨论池化层的必要性.假如输入是一个4×4矩阵,用到的池化类型是最大池化(max pooling).执行最大池化的树池是一个2×2矩阵.执行过程非常简单,把4×4的输入拆分成不同的区域,我把这个区域用不同颜色来标记.对于2×2的输出,输出的每个元素都是其对应颜色区域中的最大元素值. 左上区域的最大值是9,右上区域
学习笔记TF014:卷积层、激活函数、池化层、归一化层、高级层
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有不同类弄卷积层卷积运算.tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积层输入,创建遵循Inception架构网络 Rethinking the Inception Architecture for Computer Vision https://arxiv.org/ab
【python实现卷积神经网络】池化层实现
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html 激活函数的实现(sigmoid.softmax.tanh.relu.leakyrelu.elu.selu.softplus):https://www.cnblogs.com/xiximayou/p/127130
第十三节,使用带有全局平均池化层的CNN对CIFAR10数据集分类
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在
caffe源码 池化层 反向传播
图示池化层(前向传播) 池化层其实和卷积层有点相似,有个类似卷积核的窗口按照固定的步长在移动,每个窗口做一定的操作,按照这个操作的类型可以分为两种池化层: 输入参数如下: 输入: 1 * 3 * 4 * 4 池化核: 4 * 4 pad: 0 步长:2 输出参数如下: 输出:1 * 3 * 2 * 2 MAC (max pooling)在窗口中取最大值当做结果 AVG (average pooling)在窗口中取平均值当做结果 池化层的反向传播 按照前向传播的分类,反向传播也需要分成两类 MAC
【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最
tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)
池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( inputs, pool_size, strides, padding='valid', data_format='channels_last', name=None ) inputs: 进行池化的数据. pool_size: 池化的核大小(pool_height, pool_width),如[3,3]
TensorFlow池化层-函数
池化层的作用如下-引用<TensorFlow实践>: 池化层的作用是减少过拟合,并通过减小输入的尺寸来提高性能.他们可以用来对输入进行降采样,但会为后续层保留重要的信息.只使用tf.nn.conv2d来减小输入的尺寸也是可以的,但是池化层的效率更高. 常见的TensorFlow提供的激活函数如下:(详细请参考http://www.tensorfly.cn/tfdoc/api_docs/python/nn.html) 1.tf.nn.max_pool(value, ksize, strides,
tensorflow的卷积和池化层(二):记实践之cifar10
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tensorflow中的卷积和池化层(一)的内容,继续介绍tf框架中卷积神经网络CNN的使用. 因此,接下来将介绍CNN的入门级教程cifar10\100项目.cifar10\100 数据集是由Alex Krizhevsky.Vinod Nair和Geoffrey Hinton收集的,这两个数据集都是从800
神经网络中的池化层(pooling)
在卷积神经网络中,我们经常会碰到池化操作,而池化层往往在卷积层后面,通过池化来降低卷积层输出的特征向量,同时改善结果(不易出现过拟合).为什么可以通过降低维度呢? 因为图像具有一种“静态性”的属性,这也就意味着在一个图像区域有用的特征极有可能在另一个区域同样适用.因此,为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)来代 表这个区域的特征. 1. 一般池化(General Pooling) 池化作用于图像中
热门专题
ARC注记要素导出CAD
基于关联规则的推荐算法
ORACLE 重建 归档日志
wireguard使用教程
qt如何导入已有项目
endnote无法同步
computed详解
linux进程kill不掉
js两个数组对象找出相同的元素
kettle数据库字段在哪个表
arcgis重采样500米到0.05度
CKKS有多密钥变体吗
undertow 请求超时时间设置
win7 thin 激活证书下载
xbox one无线接收器驱动
win2008r2安装语言包教程
对象属性不赋值,那这个属性存在吗
linux 后台运行,退出shell不结束
R语言 计算相对危险度及其置信区间
windows txt 回车符