首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
拉普拉斯算子锐化例题
2024-10-05
使用二阶微分锐化图像(拉普拉斯算子)基本原理及Python实现
1. 拉普拉斯算子 1.1 简介 一种典型的各向同性的微分算子,可用于检测图像中灰度图片的区域 $$ \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}} $$ 根据上述的差分近似可以推导出 $$ \nabla^{2} f(x, y)=f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1)-4 f(x, y) $$ 1.2 锐化过程 使用拉普拉斯过滤
paper 109 :图像处理中的拉普拉斯算子
1.基本理论 拉普拉斯算子是最简单的各向同性微分算子,具有旋转不变性.一个二维图像函数 的拉普拉斯变换是各向同性的二阶导数,定义为: 为了更适合于数字图像处理,将该方程表示为离散形式: 另外,拉普拉斯算子还可以表示成模板的形式,如图5-9所示.图5-9(a)表示离散拉普拉斯算子的模板,图5-9(b)表示其扩展模板,图5-9(c)则分别表示其他两种拉普拉斯的实现模板.从模板形式容易看出,如果在图像中一个较暗的区域中出现了一个亮点,那么用拉普拉斯运算就会使这个亮点变得更亮.因为图像中的边缘
数学之路-python计算实战(20)-机器视觉-拉普拉斯算子卷积滤波
拉普拉斯算子进行二维卷积计算,线性锐化滤波 # -*- coding: utf-8 -*- #线性锐化滤波-拉普拉斯算子进行二维卷积计算 #code:myhaspl@myhaspl.com import cv2 import numpy as np from scipy import signal fn="test6.jpg" myimg=cv2.imread(fn) img=cv2.cvtColor(myimg,cv2.COLOR_BGR2GRAY) srcimg=np.array(
Laplace(拉普拉斯)算子
[摘要] Laplace算子作为边缘检测之一,和Sobel算子一样也是工程数学中常用的一种积分变换,属于空间锐化滤波操作.拉普拉斯算子(Laplace Operator)是n维欧几里德空间中的一个二阶微分算子,定义为梯度(▽f)的散度(▽·f).拉普拉斯算子也可以推广为定义在黎曼流形上的椭圆型算子,称为拉普拉斯-贝尔特拉米算子.(百度百科) [原理] 拉普拉斯算子是二阶微分线性算子,在图像边缘处理中,二阶微分的边缘定位能力更强,锐化效果更好,因此在进行图像边缘处理时,直接采用二阶微分算子而不使用
【OpenCV】边缘检测:Sobel、拉普拉斯算子
推荐博文,博客.写得很好,给个赞. Reference Link : http://blog.csdn.net/xiaowei_cqu/article/details/7829481 一阶导数法:梯度算子 对于左图,左侧的边是正的(由暗到亮),右侧的边是负的(由亮到暗).对于右图,结论相反.常数部分为零.用来检测边是否存在. 梯度算子 Gradient operators 函数f(x,y)在(x,y)处的梯度为一个向量: 计算这个向量的大小为: 梯度的方向角为: Sobel算子 sobel算
高斯拉普拉斯算子(Laplace of Gaussian)
高斯拉普拉斯(Laplace of Gaussian) kezunhai@gmail.com http://blog.csdn.net/kezunhai Laplace算子作为一种优秀的边缘检测算子,在边缘检测中得到了广泛的应用.该方法通过对图像求图像的二阶倒数的零交叉点来实现边缘的检测,公式表示如下: 由于Laplace算子是通过对图像进行微分操作实现边缘检测的,所以对离散点和噪声比较敏感.于是,首先对图像进行高斯卷积滤波进行降噪处理,再采用Laplace算子进行边缘检测,就可以提高算子对噪声
机器学习进阶-图像梯度计算-scharr算子与laplacian算子(拉普拉斯) 1.cv2.Scharr(使用scharr算子进行计算) 2.cv2.laplician(使用拉普拉斯算子进行计算)
1. cv2.Scharr(src,ddepth, dx, dy), 使用Scharr算子进行计算 参数说明:src表示输入的图片,ddepth表示图片的深度,通常使用-1, 这里使用cv2.CV_64F允许结果是负值, dx表示x轴方向算子,dy表示y轴方向算子 2.cv2.laplacian(src, ddepth) 使用拉普拉斯算子进行计算 参数说明: src表示输入的图片,ddepth表示图片的深度,这里使用cv2.CV_64F允许结果是负值 scharr算子, 从图中我们可以看出sch
Opencv3 Robert算子 Sobel算子 拉普拉斯算子 自定义卷积核——实现渐进模糊
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; //Robert算子int Demo_Robert(){ char win1[] = "window1"; char win2[] = "window2"; char win3[] = "window3"; Mat img1, img2, img3
opencv边缘检测-拉普拉斯算子
sobel算子一文说了,索贝尔算子是模拟一阶求导,导数越大的地方说明变换越剧烈,越有可能是边缘. 那如果继续对f'(t)求导呢? 可以发现"边缘处"的二阶导数=0. 我们可以利用这一特性去寻找图像的边缘. 注意有一个问题,二阶求导为0的位置也可能是无意义的位置 拉普拉斯算子推导过程 以x方向求解为例: 一阶差分:f'(x) = f(x) - f(x - 1) 二阶差分:f''(x) = f'(x+1) - f'(x) = (f(x + 1) - f(x)) - (f(x) - f(x
Opencv拉普拉斯算子做图像增强
Opencv拉普拉斯算子——图像增强 #include <iostream> #include <opencv2/opencv.hpp> using namespace std; using namespace cv; //拉普拉斯处理 cv::Mat laplaceMat(cv::Mat imgParam); int main(int argc, char *argv[]) { Mat image = imread(); if (image.empty()) { std::cou
OpenCV-跟我一起学数字图像处理之拉普拉斯算子
https://www.cnblogs.com/german-iris/p/4840647.html Laplace算子和Sobel算子一样,属于空间锐化滤波操作.起本质与前面的Spatial Filter操作大同小异,下面就通过Laplace算子来介绍一下空间锐化滤波,并对OpenCV中提供的Laplacian函数进行一些说明. 数学原理 离散函数导数 离散函数的导数退化成了差分,一维一阶差分公式和二阶差分公式分别为, Laplace算子的差分形式 分别对Laplace算子x,y两个方向的二阶
opencv —— Laplacian 拉普拉斯算子、二阶导数用于边缘检测
Laplacian 算子简介 求多元函数的二阶导数的映射又称为 Laplacian 算子: 计算拉普拉斯变换:Laplacian 函数 void Laplacian(InputArray src, OutputArray dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT); src,输入图像,填 Mat 类型即可,但需为单通道 8 位图像. d
Opencv Laplacian(拉普拉斯算子)
#include <iostream>#include <opencv2/opencv.hpp>#include <math.h> using namespace std;using namespace cv; //拉普拉斯 边缘计算void TLaplacian() { Mat img1, img2,gray_img,edge_img; char* win1 = "window1"; char* win2 = "window2"
在Latex中,拉普拉斯算子的小写符号l怎么表示
如下图所示的小写字母l,在Latex中不知道该如何表示,试过用\mathcal但是发现不行,因为\mathcal只支持大写字母. 正确方法: \ell
paper 55:图像分割代码汇总
matlab 图像分割算法源码 1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,5
matlab图像处理程序大集合
1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50
基础图像处理之混合空间增强——(Java:拉普拉斯锐化、Sobel边缘检测、均值滤波、伽马变换)
相信看过冈萨雷斯第三版数字图像处理的童鞋都知道,里面涉及到了很多的基础图像处理的算法,今天,就专门借用其中一个混合空间增强的案例,来将常见的几种图像处理算法集合起来,看能发生什么样的化学反应 首先,通过一张图来看下,我们即将需要完成的工作目标 同时,我们也借用书中的人体全身骨骼图像来进行模拟实现这些算法,这样,我们可以通过和书中展示的效果来评判我们实现的算法是否正确,那接下来,我们就来一步一步的实现吧. 第一步:拉普拉斯锐化 这里就不讲解具体的原理了,拉普拉斯是一个二阶微分的算子,这样的算子通过
Python图像处理丨认识图像锐化和边缘提取的4个算子
摘要:图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础. 本文分享自华为云社区<[Python图像处理] 十七.图像锐化与边缘检测之Roberts算子.Prewitt算子.Sobel算子和Laplacian算>,作者: eastmount . 由于收集图像数据的器件或传输数图像的通道的存在一些质量缺陷,文物图像时间久远,或者受一些其他外界因素.动态不稳定抓取图像的影响,使得图像存在模糊和有噪声的情况,从而影响到图像识别工作的开展.这时需要开展
OpenCV(5)-图像掩码操作(卷积)-锐化
锐化概念 图像平滑过程是去除噪声的过程.图像的主要能量在低频部分,而噪声主要集中在高频部分.图像的边缘信息主要也在高频部分,在平滑处理后,将会丢不部分边缘信息.因此需要使用锐化技术来增强边缘. 平滑处理的本质是图像经过平均或积分运算,锐化进行逆运算(如微分)即可.微分运算是求信号变化频率,可以增强高频分量的作用.在对图像进行锐化处理前要确定图像有较高的信噪比,否则处理后的图像增加的噪声比信号多. 常用的微分运算有一阶微分和二阶微分.一阶微分 \[ \frac{\partial f}{\parti
图像边缘检测——几种图像边缘检测算子的学习及python 实现
本文学习利用python学习边缘检测的滤波器,首先读入的图片代码如下: import cv2 from pylab import * saber = cv2.imread("construction.jpg") saber = cv2.cvtColor(saber,cv2.COLOR_BGR2RGB) plt.imshow(saber) plt.axis("off") plt.show() 图片如下: 边缘检测是图像处理和计算机视觉的基本问题,边缘检测的目的是标识数
热门专题
window.scrollTo定位固定位置不管屏幕大小
打开vs2017项目 devenv.exe 系统错误
VS2017 gitee插件使用方法
C# trace.writeline 输出到文件
QT combobox扁平化
showType()方法
Android tab 圆角滚动
递增数组建最小高度的二叉查找树
python selenium打包后弹命令行
安卓开发recycle view item交错展示
smarty 实体内容 标签
C# Inject详解
sqlalchemy里的index参数
ls -l 第一列最后三位表示的是
this指定li标签对象
js如何更改对象的属性名
mysql 拼接列数据
php laveral 项目入口 后台
鼠标移入获取当前的滚动距离
hp zbook安装ubuntu