RBF网络能够逼近任意的非线性函数,可以处理系统内的难以解析的规律性,具有良好的泛化能力,并有很快的学习收敛速度,已成功应用于非线性函数逼近.时间序列分析.数据分类.模式识别.信息处理.图像处理.系统建模.控制和故障诊断等. 输入X是个m维的向量,样本容量为P,P>m.可以看到输入数据点Xp是径向基函数φp的中心.隐藏层的作用是把向量从低维m映射到高维P,低维线性不可分的情况到高维就线性可分了. RBF Network 通常只有三层.输入层.中间层计算输入 x 矢量与样本矢量 c 欧式距
_________________________________________________________________________________________________ The support-vector mechine is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: inpu