首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
支持向量机应用的场合
2024-11-03
支持向量机(SVM)复习总结
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 其基本模型定义为特征空间上的间隔最大的线性分类器,即支持向量机的学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 或者简单的可以理解为就是在高维空间中寻找一个合理的超平面将数据点分隔开来,其中涉及到非线性数据到高维的映射以达到数据线性可分的目的. 模型函数是:其中w(n维),b待定 2.算法推导 2.1几个基本概念: 2.1.1 函数间隔(function
【转】支持向量机(SVM)
什么是支持向量机(SVM)? SVM 是一种有监督的机器学习算法,可用于分类或回归问题.它使用一种称为核函数(kernel)的技术来变换数据,然后基于这种变换,算法找到预测可能的两种分类之间的最佳边界(optimal boundary).简单地说,它做了一些非常复杂的数据变换,然后根据定义的标签找出区分数据的方法. 为什么这种算法很强大? 在上面我们说 SVM 能够做分类和回归.在这篇文章中,我将重点讲述如何使用 SVM 进行分类.特别的是,本文的例子使用了非线性 SVM 或非线性核函数的 SV
非线性回归支持向量机——MATLAB源码
支持向量机和神经网络都可以用来做非线性回归拟合,但它们的原理是不相同的,支持向量机基于结构风险最小化理论,普遍认为其泛化能力要比神经网络的强.大量仿真证实,支持向量机的泛化能力强于神经网络,而且能避免神经网络的固有缺陷--训练结果不稳定.本源码可以用于线性回归.非线性回归.非线性函数拟合.数据建模.预测.分类等多种应用场合.function [Alpha1,Alpha2,Alpha,Flag,B]=SVMNR(X,Y,Epsilon,C,TKF,Para1,Para2)%%% SVMNR.m%
萌新笔记——vim命令“=”、“d”、“y”的用法(结合光标移动命令,一些场合会非常方便)
vim有许多命令,网上搜有一堆贴子.文章列举出各种功能的命令. 对于"="."d"."y",我在无意中发现了它们所具有的相同的一些用法,先举以下三个例子: =nG dnG ynG 其中,n为行号.注意行号后面接的是大写字母"G".而"nG"恰好是光标移动到第n行的命令. 对于"=","=nG"的意思就是从当前行到第n行之间进行格式化.常用的一个命令"gg=G
高介分类:核方法与支持向量机(SVM)
数据模型:并不是简单地二维数据,多个维度或者对象的数据聚合起来 { persion1's attr1:value1,...,persion1's attrN:valueN,persion2's attr1:value1,...,persion2's attrN:value1,whetherSuccess:value } 同一个问题:不同的分类方法的类比 决策树:存在多个数值型输入,且这些数值所呈现的关系并不简单,决策树往往不
机器学习——支持向量机(SVM)之拉格朗日乘子法,KKT条件以及简化版SMO算法分析
SVM有很多实现,现在只关注其中最流行的一种实现,即序列最小优化(Sequential Minimal Optimization,SMO)算法,然后介绍如何使用一种核函数(kernel)的方式将SVM扩展到更多的数据集上. 1.基于最大间隔分隔数据 几个概念: 1.线性可分(linearly separable):对于图6-1中的圆形点和方形点,如果很容易就可以在图中画出一条直线将两组数据点分开,就称这组数据为线性可分数据 2.分隔超平面(separating hyperplane):将数据集分
scikit-learn 支持向量机算法库使用小结
之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learn SVM算法库的使用做一个小结.scikit-learn SVM算法库封装了libsvm 和 liblinear 的实现,仅仅重写了算法了接口部分. 1. scikit-learn SVM算法库使用概述 scikit-learn中SVM的算法库分为两类,一类是分类的算法库,包括SVC, NuSVC,和LinearSVC 3个类.另一类是回归算法库,包括SVR, NuSVR,和Linea
支持向量机原理(四)SMO算法原理
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归 在SVM的前三篇里,我们优化的目标函数最终都是一个关于$\alpha$向量的函数.而怎么极小化这个函数,求出对应的$\alpha$向量,进而求出分离超平面我们没有讲.本篇就对优化这个关于$\alpha$向量的函数的SMO算法做一个总结. 1. 回顾SVM优化目标函数 我们首先回顾下我们
OpenCV 之 支持向量机 (一)
机器学习是由 模型 + 策略 + 算法 构成的,构建一种机器学习方法 (例如,支持向量机),就是具体去确定这三个要素. 1 支持向量机 支持向量机,简称 SVM (Support Vector Machine),是一种二分分类模型. 1) 模型 (model) 定义在特征空间上的,一种间隔 (margin) 最大的,线性分类器 (linear classifier) 2) 策略 (strategy) 使间隔最大化,可转化为求解凸二次规划的问题. 3) 算法 (algorithm) 求解凸二次规
支持向量机SVM
SVM(Support Vector Machine)有监督的机器学习方法,可以做分类也可以做回归.SVM把分类问题转化为寻找分类平面的问题,并通过最大化分类边界点距离分类平面的距离来实现分类. 有好几个模型,SVM基本,SVM对偶型,软间隔SVM,核方法,前两个有理论价值,后两个有实践价值.下图来自龙老师整理课件. 基本概念 线性SVM,线性可分的分类问题场景下的SVM.硬间隔. 线性不可分SVM,很难找到超平面进行分类场景下的SVM.软间隔. 非线性SVM,核函数(应用最广的一种技巧,核函数
支持向量机(SVM)相关免费学习视频集锦
http://www.matlabsky.com/thread-36823-1-1.html [其它] 支持向量机(SVM)相关免费学习视频集锦 [复制链接] faruto 签到天数: 12 天 [LV.3]偶尔看看II 电梯直达 楼主 发表于 2013-7-28 12:08:46 | 只看该作者 <Learn SVM Step by Step>系列视频-应用篇:Libsvm的下载.安装和使用http://www.matlabsky.com/thread-18080-1-
redis 数据类型详解 以及 redis适用场景场合
1. MySql+Memcached架构的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的不断增加,和访问量的持续增长,我们遇到了很多问题: 1.MySQL需要不断进行拆库拆表,Memcached也需不断跟着扩容,扩容和维护工作占据大量开发时间. 2.Memcached与MySQL数据库数据一致性问题. 3.Memcached数据命中率低或down机,大量访问直接穿透到DB,MySQL无
支持向量机 (SVM)分类器原理分析与基本应用
前言 支持向量机,也即SVM,号称分类算法,甚至机器学习界老大哥.其理论优美,发展相对完善,是非常受到推崇的算法. 本文将讲解的SVM基于一种最流行的实现 - 序列最小优化,也即SMO. 另外还将讲解将SVM扩展到非线性可分的数据集上的大致方法. 预备术语 1. 分割超平面:就是决策边界 2. 间隔:样本点到分割超平面的距离 3. 支持向量:离分割超平面距离最近的样本点 算法原理 在前一篇文章 - 逻辑回归中,讲到了通过拟合直线来进行分类. 而拟合的中心思路是求错误估计函数取得最小值,得到的拟合
机器学习笔记——支持向量机 (SVM)
声明: 机器学习系列主要记录自己学习机器学习算法过程中的一些参考和总结,其中有部分内容是借鉴参考书籍和参考博客的. 目录: 什么支持向量机(SVM) SVM中必须知道的概念 SVM实现过程 SVM核心点--公式原理推导 SVM核心点--如何寻找支持向量 SVM核心点--SMO算法 SVM核心点--核函数 实际使用过程中需要注意的地方 SVM总结与课后作业 参考文献 一.什么是支持向量机(SVM) 二.SVM中的必须知道的概念 三.SVM实现过程 四.SVM核心点--公式原理推导 五.SVM核心点
SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大于1的约束条件,可以对每个样本$(x_i, y_i)$引进一个松弛变量$\xi_i \ge 0$,使函数间隔加上松弛变量大于等于1,, $$y_i (w \cdot x_i + b) \ge 1 - \xi_i$$ 目标函数变为 $$\frac 1 2 {||w||^2} + C \sum_{j=1
SVM-线性可分支持向量机
SVM-线性可分支持向量机 如果您想体验更好的阅读:请戳这里littlefish.top 函数间隔和几何间隔 给定线性可分训练数据集,通过间隔最大化或等价地求解相应的凸二次规划问题学习得到的分离超平面为 $$w^* \cdot x+b^* =0 $$ 以及相应的分类决策函数 $$f(x) = sign (w^* \cdot x + b^*)$$ 称为线性可分支持向量机. 对于给定训练集合T和超平面$(w,b)$,定义超平面$(w,b)$关于样本点$(x _i,y_i)$的函数间隔为 $$\hat
Andrew Ng机器学习公开课笔记 -- 支持向量机
网易公开课,第6,7,8课 notes,http://cs229.stanford.edu/notes/cs229-notes3.pdf SVM-支持向量机算法概述, 这篇讲的挺好,可以参考 先继续前面对线性分类器的讨论, 通过机器学习算法找到的线性分类的线,不是唯一的,对于一个训练集一般都会有很多线可以把两类分开,这里的问题是我们需要找到best的那条线 首先需要定义Margin, 直观上来讲,best的那条线,应该是在可以正确分类的前提下,离所有的样本点越远越好,why? 因为越靠近分类
coursera机器学习-支持向量机SVM
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# <补充>支持向量机方法的三要素(若
Stanford机器学习笔记-8. 支持向量机(SVMs)概述
8. Support Vector Machines(SVMs) Content 8. Support Vector Machines(SVMs) 8.1 Optimization Objection 8.2 Large margin intuition 8.3 Mathematics Behind Large Margin Classification 8.4 Kernels 8.5 Using a SVM 8.5.1 Multi-class Classification 8.5.2 Logi
stanford coursera 机器学习编程作业 exercise 6(支持向量机-support vector machines)
在本练习中,先介绍了SVM的一些基本知识,再使用SVM(支持向量机 )实现一个垃圾邮件分类器. 在开始之前,先简单介绍一下SVM ①从逻辑回归的 cost function 到SVM 的 cost function 逻辑回归的假设函数如下: hθ(x)取值范围为[0,1],约定hθ(x)>=0.5,也即θT·x >=0时,y=1:比如hθ(x)=0.6,此时表示有60%的概率相信 y 等于1 显然,要想让y取值为1,hθ(x)越大越好,因为hθ(x)越大,y 取值为1的概率也就越大,也即:更
热门专题
vim插件管理器vundle
pyopengl 渲染三角形
oracle 类似ifnull的函数
C#字典不添加重复值的方法
eslint 语法报错
spark HA集群部署 windows
logviewerpro没编辑
keil编译显示变量未声明
mysql 修改my.ini的host
qnewworkreply 异步 下载
16进制转ipv6 在线
C# redis 实例
arcgis10.2服务迁移
编辑HTML网页文件,使用DIV CSS进行页面布局
引入百度地图API 提示找不到BMAP
BigDecima.ZERO.compareTo用法
jquery获取data-*属性的dom
printf数字转美标每3位数加,
Windows server 2008 R2完全安装
solve_qp函数