首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
数据分析预处理R语言代码
2024-11-10
R语言学习笔记(数据预处理)
setwd("d:/r/r-data/")data=read.table("salary.txt",header=T)attach(data)mean(Salary) #工资的平均值length(Salary) #数据个数cumsum(Salary) #累加 salary1=cut(Salary,3) #将数据分为三组table(salary1) salary1=cut(Salary,3,labels=c("low","medium&q
机器学习十大算法总览(含Python3.X和R语言代码)
引言 一监督学习 二无监督学习 三强化学习 四通用机器学习算法列表 线性回归Linear Regression 逻辑回归Logistic Regression 决策树Decision Tree 支持向量机SVM Support Vector Machine 朴素贝叶斯Naive Bayes K近邻KNN K- Nearest Neighbors K均值K-Means K-means如何形成群类 随机森林Random Forest 降维算法Dimensionality Reduction Algo
数据分析和R语言的那点事儿_1
最近遇到一些程序员同学向我了解R语言,有些更是想转行做数据分析,故开始学习R或者Python之类的语言.在有其他编程语言的背景下,学习R的语法的确是一件十分简单的事.霸特,如果以为仅仅是这样的话那就图样图森破. 首先,数据分析是一个非常庞杂的职能,也许岗位抬头均为数据分析师的两人,做的事情却大不相同——比如使用hadoop做日志统计和使用Excel处理报表,这简直是两个领域,相互之间的职能了解,可能仅为对方工作的冰山一角. 其次,无论任何行业的数据分析,其日常工作主要为以下几块: 数据获取——数
数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵
数据分析与R语言-概念点(一)
一.数据分析 1.数据分析的多层模型 常用的统计量 常用的算法 常用的数据分析工具 常见的报表 二.R语言 1.什么是R语言? R是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具. R与spss几乎是一样的. R是一套完整的数据处理.计算和制图软件系统.其功能包括:数据存储和处理系统:数组运算工具(其向量.矩阵运算方面功能尤其强大):完整连贯的统计分析工具:优秀的统计制图功能:简便而强大的
数据分析,R语言
数据结构 创建向量和矩阵 1 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 1 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 1 函数help() 生成向量 1 seq() 生成字母序列letters 新建向量 1 Which()函数,rev()函数,sort()函数 生成矩阵 1 函数matrix() 矩阵运算 1 函数t(),矩阵加减 矩阵运算 1
插值和空间分析(一)_探索性数据分析(R语言)
> library(lattice) > library(sp) > data(meuse) > coordinates(meuse) <- c("x","y") > spplot(meuse, "zinc", do.log=T)> bubble(meuse, "zinc", do.log=T, key.space="bottom") > xyplot(log
决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通
R语言 常见模型
转自 雪晴网 [R]如何确定最适合数据集的机器学习算法 抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型.本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中. 适用于你的数据集的最佳算法 你无法在建模前就知道哪个算法最适用于你的数据集.你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking.我们所遇到的问题不是我应该采用哪个算法来处理我的数
Rmarkdown用法与R语言动态报告
Rmarkdown用法与R语言动态报告数据分析用R语言非常便捷,因为R语言的社区强大,并且在不断更新和完善,提供了各种分析利器.Knitr和Rmarkdown包则是数据分析中的动态报告利器. 下面是一份输出HTML文档的Rmd文件.备忘--- # 一级标题(#+空格+文字) ## 二级标题(##+空格+文字) ....... ....... ##### 五级标题 ### 无序列表 运动: - 篮球 - 足球 ### 有序列表排名: 1. 第一名 2. 第二名 3. 第三名 ## 嵌入代码 把r换
R语言通过loess去除某个变量对数据的影响
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回
R语言 一套内容 从入门 到放弃
[怪毛匠子整理] 1.下载 wget http://mirror.bjtu.edu.cn/cran/src/base/R-3/R-3.0.1.tar.gz 2.解压: tar -zxvf R-3.0.1.tar.gz cd R-3.0.1 3.安装 yum install readline-devel yum install libXt-devel ./configure 如果使用rJava需要加上 --enable-R-shlib ./configure --enable-R-shlib -
R语言通过loess去除某个变量对数据的影响--CNV分析
当我们想研究不同sample的某个变量A之间的差异时,往往会因为其它一些变量B对该变量的固有影响,而影响不同sample变量A的比较,这个时候需要对sample变量A进行标准化之后才能进行比较.标准化的方法是对sample 的 A变量和B变量进行loess回归,拟合变量A关于变量B的函数 f(b),f(b)则表示在B的影响下A的理论取值,A-f(B)(A对f(b)残差)就可以去掉B变量对A变量的影响,此时残差值就可以作为标准化的A值在不同sample之间进行比较. Loess局部加权多项式回归
手把手教你学习R语言
本文为带大家了解R语言以及分段式的步骤教程! 人们学习R语言时普遍存在缺乏系统学习方法的问题.学习者不知道从哪开始,如何进行,选择什么学习资源.虽然网络上有许多不错的免费学习资源,然而它们多过了头,反而会让人挑花了眼. 为了构建R语言学习方法,我们在Vidhya和DataCamp中选一组综合资源,帮您从头学习R语言.这套学习方法对于数据科学或R语言的初学者会很有用;如果读者是R语言的老用户,则会由本文了解这门语言的部分最新成果. R语言学习方法会帮助您快速.高效学习R语言. 前言 在开始学习之前
R 语言赋值运算符:`<-` , `=`, `<<-`
<- 与 = 间的区别 <- 与 = 在大部分情况下是应该可以通用的.并且,相对于 <<- 运算符,它们的赋值行为均在它们自身的环境层(environment hierarchy)中进行. R语言中,<- 与 = 这两个赋值运算符最主要的区别在于两者的作用域不同.大家可以从下面的例子感受一下. 好多好多人喜欢用的 = 貌似许多早期学习R的童鞋都比较喜欢使用 = 进行赋值.毕竟,简简单单的a = 5用起来比较符合大多数现有语言的习惯. > rm(x) ## 如果变量 x
15、R语言聚类树的绘图原理
聚类广泛用于数据分析.去年研究了一下R语言聚类树的绘图原理.以芯片分析为例,我们来给一些样品做聚类分析.聚类的方法有很多种,我们选择Pearson距离.ward方法. 选择的样品有: "GSM658287.CEL", "GSM658288.CEL", "GSM658289.CEL", "GSM658290.CEL", "GSM658291.CEL", "GSM658292.CEL", &
关联规则-R语言实现
关联规则code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && document.readyState && document.readyState === "complete") { window.setTimeout(function() { hljs.initHighlighting(); }, 0);} .main-contai
第二篇:R语言数据可视化之数据塑形技术
前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra
R语言各种假设检验实例整理(常用)
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225 H1: μ > 225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N
R语言写2048游戏
2048 是一款益智游戏,只需要用方向键让两两相同的数字碰撞就会诞生一个翻倍的数字,初始数字由 2 或者 4 构成,直到游戏界面全部被填满,游戏结束. 编程时并未查看原作者代码,不喜勿喷. 程序结构如下: R语言代码: #!/usr/bin/Rscript #画背景 draw_bg <- function(){ plot(0,0,xlim=c(0,0.8),ylim=c(0,0.8),type='n',xaxs="i", yaxs="i") for (i in
R语言分析(一)-----基本语法
一, R语言所处理的工作层: 解释一下: 最下面的一层为数据源,往上是数据仓库层,往上是数据探索层,包括统计分析,统计查询,还有就是报告 再往上的三层,分别是数据挖掘,数据展现和数据决策. 由上图可知,R语言是可以用于数据挖掘,数据展现,而后领导根据展现的数据来决策,R语言在数据展现的方面,拥有很强大的功能. 二,R语言的数据结构: 包括如下的几项:包括向量,矩阵,数组,数据框,列表和因子 1,向量: 创建向量的方法一共有三种,分别如下: 第一种,使用c()的这个方法: 由于博客中木有R语言
热门专题
java fancebook授权登录
window 删除 dos alias
电脑开机时有个onekey Ghost选项
javascript质数的判读
service层创建main
vyos 多网卡设置
springBoot测试环境启动找不到main方法
android 效果汇总
BigDecimal 保留两位小数工具类
Devexpress 新增行编辑状态
css 图片尺寸不一致
jstack日志在线分析工具
前端商品规格SKU算法
attention is all you need论文引用
二进制炸弹phase_2
matlab如何显示分数
python JSON dump 输出到文件
C语言头文件中怎么引用c文件中的结构体
最新地图生成器 密匙
axure循环滚动文字