背景 在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据.在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类.对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节. 如何准确.高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量取数并Load:直连MySQL去Select表中的数据,然后存到本地文件作为中间存储,最后把
背景 在数据仓库建模中,未经任何加工处理的原始业务层数据,我们称之为ODS(Operational Data Store)数据.在互联网企业中,常见的ODS数据有业务日志数据(Log)和业务DB数据(DB)两类.对于业务DB数据来说,从MySQL等关系型数据库的业务数据进行采集,然后导入到Hive中,是进行数据仓库生产的重要环节. 如何准确.高效地把MySQL数据同步到Hive中?一般常用的解决方案是批量取数并Load:直连MySQL去Select表中的数据,然后存到本地文件作为中间存储,最后把
http://blog.csdn.net/bitcarmanlee/article/details/51013474 根据自己的理解与实际项目经验,说说ODS与EDW的异同.如果有不对的地方,欢迎大家批评指正. 维基百科对于ODS的定义为”An operational data store (or “ODS”) is a database designed to integrate data from multiple sources for additional operations on t