因子的概念:假如整数n除以m,结果是无余数的整数,那么我们称m就是n的因子. 需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立.反过来说,我们称n为m的倍数. 求一个正整数n的所有因子,非常简单.只要从1到n逐个进行测试就可以.可以削减的一点计算量是不用遍历到n,遍历到根号n就可以. C#代码如下 public List<int> Factors(int n) { List<int> list = new List<int>(); int rootn
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a function that takes an integer n and return all possible combinations of its factors. Note: Each combination's factors must be sorted ascending, for examp
Numbers can be regarded as product of its factors. For example, 8 = 2 x 2 x 2; = 2 x 4. Write a function that takes an integer n and return all possible combinations of its factors. Note: Each combination's factors must be sorted ascending, for examp
[题目描述]编写程序,输出一个给定正整数x(x>1)的质因子展开式. [输入格式]请在一行中输入整数x的值. [输出格式]对每一组输入的x,按以下格式输出x的质因子展开式(假如x的质因子分别为a.b.c):x=abc [输入样例]72 [输出样例]72=22233 代码: num = int(input()) newnum = num text = "" counter = 2 while counter * counter <= newnum: if newnum % c
第二小整数 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8299 Accepted Submission(s): 5227 Problem Description 求n个整数中倒数第二小的数.每一个整数都独立看成一个数,比如,有三个数分别是1,1,3,那么,第二小的数就是1. Input 输入包含多组测试数据.输入的第一行
Given a positive integer n and you can do operations as follow: If n is even, replace n with n/2. If n is odd, you can replace n with either n + 1 or n - 1. What is the minimum number of replacements needed for n to become 1? Example 1: Input: 8 Outp
Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 to 3999. 之前那篇文章写的是罗马数字转化成整数(http://www.cnblogs.com/grandyang/p/4120857.html), 这次变成了整数转化成罗马数字,基本算法还是一样.由于题目中限定了输入数字的范围(1 - 3999), 使得题目变得简单了不少. 基本字符 I V
Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases. Notes: It is intended for this problem to be spe
问题描述: We are asking for a function to take a positive integer value, and return a list of all positive integer pairs whose values - when squared- sum to the given integer. For example, given the parameter 25, the function could return two pairs of 5,