模型性能的度量 在监督学习中,已知样本 ,要求拟合出一个模型(函数),其预测值与样本实际值的误差最小. 考虑到样本数据其实是采样,并不是真实值本身,假设真实模型(函数)是,则采样值,其中代表噪音,其均值为0,方差为. 拟合函数的主要目的是希望它能对新的样本进行预测,所以,拟合出函数后,需要在测试集(训练时未见过的数据)上检测其预测值与实际值之间的误差.可以采用平方误差函数(mean squared error)来度量其拟合的好坏程度,即 误差期望值的分解 经过进一步的研究发现,对于某种特定的模型