首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
最长公共子序列递归、备忘录、动态规划算法比较
2024-09-01
从最长公共子序列问题理解动态规划算法(DP)
一.动态规划(Dynamic Programming) 动态规划方法通常用于求解最优化问题.我们希望找到一个解使其取得最优值,而不是所有最优解,可能有多个解都达到最优值. 二.什么问题适合DP解法 如何判断一个问题是不是DP问题呢?适合DP求解的最优化问题通常具有以下两个特征: 最优子结构 如果一个问题的最优解包含其子问题的最优解,我们就称此问题具有最优子结构性质. 以0-1背包问题(给你一个可装载重量为W的背包和N个物品,每个物品有重量和价值两个属性.其中第i个物品的重量为wt[i],价值为v
LCS(最长公共子序列)动规算法正确性证明
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下,当想到算法正确性的时候,发现这个算法的正确性证明并不好做.于是想了一段时间,里面有几个细节很trick,容易陷进去.想了几轮,现在把证明贴出来,有异议的可以留言一起交流. 先把一些符号和约定说明下: 假设有两个数组,A和B.A[i]为A的第i个元素,A(i)为由A的第一个元素到第i个元素所组成的前缀.m(i,
51nod 最长公共子序列问题(动态规划)(LCS)(递归)
最长公共子序列问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 abcicba abdkscab 输出示例 abca 请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案. 不同语言如何处理输入输出,请查看下面的语言说明. #include <iostream> #include <cstring> #include &
ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))
这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序列的要求满足其中字符的顺序和字母在两个序列中都必须相同,任意输出一个符合题意的子序列 首先是最基本的最长公共子序列的状态转移问题: 这里的maxLen[i][j]数组的意思就是保存s1的前 i 个字符和s2的前 j 个字符匹配的状态. 举个例子:maxLen[3][6]即表明在s1的前3个字符和s2
【51NOD】1006 最长公共子序列Lcs(动态规划)
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Input示例 abcicba abdkscab Output示例 abca 问题定义• 子序列– X=(A, B, C, B, D,
51nod--1006 最长公共子序列Lcs (动态规划)
题目: 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. Input 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) Output 输出最长的子序列,如果有多个,随意输出1个. Input示例 abcicba abdkscab Output示例 abca 分析: 这次要打印LCS, 所以需要额外的处理: 一般LC
51nod1006 -最长公共子序列Lcs【动态规划】
给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是,abca也是,其中abca是这两个字符串最长的子序列. 收起 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入样例 abcicba abdkscab 输出样例 abca #include <iostream> #include<cstdio&g
动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称为最长公共子序列问题. 与求最长递增子序列一样,我们首先将原问题分割成一些子问题,我们用 dp[i][j]表示 S1 中前 i 个字符与 S2 中前 j 个字符分别组成的两个前缀字符串的最长公共子串长度. 显然的,当 i. j 较小时我们可以直接得出答案,如 dp[0][j]必等于 0.那么,假设我
经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列
0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多项式复杂程度的非确定性问题, 首先是基本的0-1背包问题. ''' '''给定N个物品和一个背包,物品i的质量是Wi,其价值位Vi,背包的容量为C,问应该 如何选择装入背包的物品,使得转入背包的物品的总价值为最大? 在选择物品的时候,对每种物品i只有两种选择,即装入背包或不装入背包.不能将 物品i装
【科技】位运算(bitset)优化最长公共子序列算法
最长公共子序列(LCS)问题 你有两个字符串 \(A,B\),字符集为 \(\Sigma\),求 \(A, B\) 的最长公共子序列. 简单动态规划 首先有一个广为人知的 dp:\(f_{i,j}\) 为 \(A\) 的长度为 \(j\) 的前缀与 \(B\) 长度为 \(i\) 的前缀的 LCS.(注意 \(i\) 和 \(j\) 分别对于那个串) 那么显然有: \[f_{i,j} = \begin{cases} f_{i-1, j-1} + 1 & (A_j = B_i) \\ \max(f
动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式,逐步比对,若相同则对应参考值自增,同时记录当前时刻最大参考值,及其位置.最后输出多组结果. 源码:lcs.cpp #include "stdafx.h" #include <stdio.h> #include <vector> /*****************
【转】最长公共子序列(LCS),求LCS长度和打印输出LCS
求LCS的长度,Java版本: public static int LCS(int[]a,int[] b) { int [][]c=new int[a.length+1][b.length+1]; for(int i=1;i<=a.length;i++) { for(int j=1;j<=b.length;j++) { if(a[i-1]==b[j-1]) c[i][j]=c[i-1][j-1]+1; else c[i][j]=Math.max(c[i-1][j], c[i][j-1]); }
DP:LCS(最长公共子串、最长公共子序列)
1. 两者区别 约定:在本文中用 LCStr 表示最长公共子串(Longest Common Substring),LCSeq 表示最长公共子序列(Longest Common Subsequence). 子串要求在原字符串中是连续的,而子序列则没有要求.例如: 字符串 s1=abcde,s2=ade,则 LCStr=de,LCSeq=ade. 2. 求最长公共子串(LCStr) 算法描述:构建如下图的矩阵dp[][],当s1[i] == s2[j] 的时候,dp[i][j]=1:最后矩阵中斜对
[python] 获得所有的最长公共子序列
两句闲话 得到两个序列的最长公共子序列(LCS)是个经典问题,使用动态规划,实现起来并不难. 一般来说,我们只是输出一个LCS.但是,老师布置的作业是输出所有的LCS. 解法 按照一般的方法,我们首先得到一个矩阵,然后从矩阵的右下角开始回溯.回溯时,我们选择较大的数字,以向左,或向上,或向左上.但当数字相等时,我们往往会随便向某一个方向回溯,这样的话,我们就只会得到一个LCS.因此,很容易想到,所有的LCS会构成一棵树,我们只需要对这棵树进行先序遍历,就可得到所有的LCS. 代码如下 #pyth
算法导论-动态规划(最长公共子序列问题LCS)-C++实现
首先定义一个给定序列的子序列,就是将给定序列中零个或多个元素去掉之后得到的结果,其形式化定义如下:给定一个序列X = <x1,x2 ,..., xm>,另一个序列Z =<z1,z2 ,..., zk> 满足如下条件时称为X的子序列,即存在一个严格递增的X的下标序列<i1,i2 ,..., ik>,对于所有j = 1,2,...,k,满足xij = zj,例如,Z=<B,C,D,B>是X=<A,B,C,B,D,A,B>的子序列,对应的下标序列为&l
《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. 2.最长公共子串 其实这是一个序贯决策问题,可以用动态规划来求解.我们采用一个二维矩阵来记录中间的结果.这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是
算法复习周------“动态规划之‘最长公共子序列’”&&《计蒜课》---最长公共子串题解
问题描述: 这个问题其实很容易理解.就是给你两个序列X={x1,x2,x3......xm} Y={y1,y2,y3......ym},要求找出X和Y的一个最长的公共子序列. 例:Xi={A, B, C, B, D, A} Yj={B, C, A, B, A} 求得 Z={B, C, B, A} 问题详解: 那么问题来了,我们如何去求解出最终的过程呢?既然是复习周,那我就开门见山,直接用DP算法去解决这个问题. 分析:该问题具有最优子结构的性质. 这里我们使用上面的那个例子:我们此时倒着
动态规划_基础_最长公共子序列_多种方法_递归/dp
D: 魔法少女资格面试 题目描述 众所周知,魔法少女是一个低危高薪职业.随着近年来报考魔法少女的孩子们越来越多,魔法少女行业已经出现饱和现象!为了缓和魔法少女界的就业压力,魔法少女考核员丁丁妹决定增加魔法少女资质考核的难度.然而,即使如此,通过资质考核的魔法少女们数量仍然过多,因此,丁丁妹决心增加一轮面试,从而淘汰掉更多的预备魔法少女.具体而言,她打算对所有面试者询问这样一个问题:给两个长度为 n 的全排列,它们的最长公共子序列长度是多少?不幸的是,由于丁丁妹没有好好上过学,她自己也不知道答案是
动态规划算法——最长公共子序列问题(java实现)
已知序列X=(A,B,C,A,B,D,A)和序列Y=(B,A,D,B,A),求它们的最长公共子序列S. /* * LCSLength.java * Version 1.0.0 * Created on 2017年11月30日 * Copyright ReYo.Cn */ package reyo.sdk.utils.test.dy; /** * <B>创 建 人:</B>AdministratorReyoAut <BR> * <B>创建时间:</B&g
[C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列、0-1背包
一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.为了
热门专题
esxi7.0 安装Windows
websocket集群方案
winform 阻止屏保
java 访问修饰符
codeblocks编译wxwidgets
cobaltstrike 客户端连接超时
jquery ajax提交python
springboot返回值data既可以是json又list
spark 聚合 函数 众数
.net core 获取当前请求上下文
k8s时代还需要用pm2
sharding-total-count 作用
H3C运营商地址范围
mstsc 连接 26位
varnish查看缓存的key
RN webview 无法返回
jquery显示隐藏div
jquery展开收起滑动到指定位置
html 产品分类显示
消息队列 吃苹果放苹果