Problem 给出一个有向无环图 (\(DAG\)),求出最少使用其中多少条互不相交的路径覆盖所有点. Solution 若有 \(n\) 个点,对于每个点 \(i\) ,我们将它拆成两个点 \(i\) 与 \(i'\),分别放在一个二分图的两侧,然后,对于有向图中的每条边 \((a,b)\) 我们在二分图中将 \((a,b')\) 这两个点连在一起. 当所有边在二分图中已经相应连好之后,我们跑二分图最大匹配,可以使用匈牙利,不过个人更倾向建立一个超级源点连向左侧每个点,建立一个超级汇点被右侧