题目: Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 翻译: 找出字符串s中最长的回文子串,字符串s的最长是1000,假设存在唯一的最长回文子串 法一:直接暴力破解 O(N3)的时间复杂度,运行超
题目 Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example1: Input: "babad" Output: "bab" Note: "aba is also a valid answer. " Example2: Input: "
题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 即给定一个字符串,求它的最长回文子串的长度(或者最长回文子串). 解法一 对于一个问题,一定可以找到一个傻的可爱的暴力解法,本题的暴力解法即
这算是一道经典的题目了,最长回文子串问题是在一个字符串中求得满足回文子串条件的最长的那一个.常见的解题方法有三种: (1)暴力枚举法,以每个元素为中心同时向左和向右出发,复杂度O(n^2): (2)动态规划法,复杂度O(n^2).设f[i][j]表示[i,j]之间最长回文子串,递推方程见链接. 对于暴力枚举的方法,这里有一个简单的Java实现,要好好理解. public String longestPalindrome(String s) { int start = 0, end = 0; in
[译+改]最长回文子串(Longest Palindromic Substring) Part II 原文链接在http://leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 原文作者有些地方逻辑上有点小问题,我做了纠正.关于解释时间复杂度上,原作者就只有两句话,我无法理解,特意在此加强了,便于理解. 问题:给定字符串S,求S中的最长回文子串. 在上一篇,我们给出了4种算法,其中包括一个O(N2)时间O(1)空间的算法
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is 1000, and there exists one unique longest palindromic substring. 求字符串的最长回文子串 算法1:暴力解法,枚举所有子串,对每个子串判断是否为回文,复杂度为O(n^3) 算法2:删除暴力解法中有很多重复的判
1297. Palindrome Time Limit: 1.0 secondMemory Limit: 16 MB The “U.S. Robots” HQ has just received a rather alarming anonymous letter. It states that the agent from the competing «Robots Unlimited» has infiltrated into “U.S. Robotics”. «U.S. Robots» s