def incSeq(seq): start = 0 for i in xrange(1, len(seq)): if seq[i] < seq[i-1]: yield start, i - start start = i maxIncSeq = reduce(lambda x,y: x if x[1]>y[1] else y, incSeq(seq)) 得到最长递增子串长度及起始位置,时间复杂度O(n).
Given an integer matrix, find the length of the longest increasing path. From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed). E
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, Given [10, 9, 2, 5, 3, 7, 101, 18], The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than
Monkey and Banana Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6866 Accepted Submission(s): 3516 Problem Description A group of researchers are designing an experiment to test the IQ of a monkey
题目链接:51nod 1134 最长递增子序列 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int a[N]; int b[N]; int Search(int num, int low, int high){ int mid; while(low <= high){ mid = (low + high)/; ; ; } return low; } in
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. public static int lcs(String s1, String s2) { int[][] dp = new int[s1.length()+1][s2.length()+1]; f