Given an unsorted array of integers, find the length of longest increasing subsequence. For example,Given [10, 9, 2, 5, 3, 7, 101, 18],The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than o
The All-purpose Zero Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 947 Accepted Submission(s): 453 Problem Description ?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] &l
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. public static int lcs(String s1, String s2) { int[][] dp = new int[s1.length()+1][s2.length()+1]; f
最长递增子序列是动态规划中最经典的问题之一,我们从讨论这个问题开始,循序渐进的了解动态规划的相关知识要点. 在一个已知的序列 {a1, a 2,...an}中,取出若干数组成新的序列{ai1, ai 2,...aim},其中下标 i1.i2…im保持递增,即新数列中的各个数之间依旧保持原数列中的先后顺序,那么我们称新的序列{ai1, ai 2,...aim}为原序列的一个子序列.若在子序列中,当下标 ix > iy时,aix > aiy,那么我们称这个子序列为原序列的一个递增子序列.最长递增子
题目描述与背景介绍 背景题目: [674. 最长连续递增序列]https://leetcode-cn.com/problems/longest-continuous-increasing-subsequence/ [300. 最长递增子序列]https://leetcode-cn.com/problems/longest-increasing-subsequence/ 这两个都是DP的经典题目,674比较简单. 代码: class Solution { public int findLength