Paper Information Title:Variational Graph Auto-EncodersAuthors:Thomas Kipf, M. WellingSoures:2016, ArXivOthers:1214 Citations, 14 References 1 A latent variable model for graph-structured data VGAE 使用了一个 GCN encoder 和 一个简单的内积 decoder ,架构如下图所示: Defini
5.(2021.7.12)Bioinformatics-KG4SL:用于人类癌症综合致死率预测的知识图神经网络 论文标题:KG4SL: knowledge graph neural network for synthetic lethality prediction in human cancers 论文地址:https://academic.oup.com/bioinformatics/article/37/Supplement_1/i418/6319703 论文期刊:Bioinformati
论文标题:Translating Embeddings for Modeling Multi-relational Data 标题翻译:多元关系数据翻译嵌入建模 摘要: 考虑多元关系数据的实体和关系在低维向量空间的嵌入问题.我们的目标是提出一个权威模型,该模型比较容易训练,包含一组简化了的参数,并且能够扩展到非常大的数据库.因此,我们提出了TransE,一个将关系作为低维空间实体嵌入的翻译的方法.尽管它很简单,但是这种假设被证明是强大的,因为大量的实验表明在两个知识库连接预测方面,TransE明
10 Exploring Temporal Information for Dynamic Network Embedding 5 link:https://scholar.google.com.sg/scholar_url?url=https://ieeexplore.ieee.org/abstract/document/9242309/&hl=zh-TW&sa=X&ei=ZiiOYp6gEpT0yASct56wBQ&scisig=AAGBfm3bQgwV0icZGtwl
14 TEMPORAL GRAPH NETWORKS FOR DEEP LEARNING ON DYNAMIC GRAPHS link:https://scholar.google.com.hk/scholar_url?url=https://arxiv.org/pdf/2006.10637.pdf%3Fref%3Dhttps://githubhelp.com&hl=zh-TW&sa=X&ei=oVakYtvtIo74yASQ1Jj4AQ&scisig=AAGBfm0bNv