集成学习通过从大量的特征中挑出最优的特征,并将其转化为对应的弱分类器进行分类使用,从而达到对目标进行分类的目的. 核心思想 它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些若分类器集合起来,构成一个更强的最终分类器(强分类器).其算法本身是通过改变数据分布来实现的,它根据每次训练集中每个样本的分类是否正确,以及上次总体分布的准确率,来确定每个样本的权值,将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最终的分类器.使