首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
机器学习周志平PDF
2024-09-07
周志华《机器学习》高清电子书pdf分享
周志华<机器学习>高清电子书pdf下载地址 下载地址1:https://545c.com/file/20525574-415455837 下载地址2: https://pan.baidu.com/s/1m2yZsojL8Xd8cm9K5-b_AQ 提取码: 5nne
《百面机器学习算法工程师带你去面试》高清PDF及epub+《美团机器学习实践》PDF及思维导图
http://blog.sina.com.cn/s/blog_ecd882db0102yuek.html <百面机器学习算法工程师带你去面试>高清PDF及epub+<美团机器学习实践>PDF及思维导图 (2019-01-13 13:01:11) 转载▼ 标签: 机器学习实践 美团机器学习 百面机器学习 大规模 特征工程 分类: 机器学习 人工智能领域正在以超乎人们想象的速度发展,从日常工作.生活中各种有趣的现象出发,不仅囊括了机器学习的基本知识 ,而且还包含了成为出众算法工程师的相
机器学习周志华 pdf统计学习人工智能资料下载
周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航, 下载地址: https://u12230716.pipipan.com/fs/12230716-336803118 人工智能-李开复, 下载地址: https://u12230716.pipipan.com/fs/12230716-336902476 吴恩达深度学习笔记,下载地址: https://u12
【Todo】【读书笔记】机器学习-周志华
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. 当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. 还有另一篇读书笔记(Link)是关于<机器学习实战>.实战经验也很重要. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classi
XGBoost——机器学习--周振洋
XGBoost——机器学习(理论+图解+安装方法+python代码) 目录 一.集成算法思想 二.XGBoost基本思想 三.MacOS安装XGBoost 四.用python实现XGBoost算法 在竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升.既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢? 我们先来直观的理解一下什么是XGBoost.XGBoost算法是和决策树算法联系到一起的.决策树算法在我的另一篇博客中讲过了. 一.集
Python机器学习实践指南pdf (中文版带书签)、原书代码、数据集
Python机器学习实践指南 目 录 第1章Python机器学习的生态系统 1 1.1 数据科学/机器学习的工作 流程 2 1.1.1 获取 2 1.1.2 检查和探索 2 1.1.3 清理和准备 3 1.1.4 建模 3 1.1.5 评估 3 1.1.6 部署 3 1.2 Python库和功能 3 1.2.1 获取 4 1.2.2 检查 4 1.2.3 准备 20 1.2.4 建模和评估 26 1.2.5 部署 34 1.3 设置机器学习的环境 34 1.4 小结 34 第2章构建应用程序,发
资源|《美团机器学习实践》PDF+思维导图
今天再给大家推荐一本由美团算法团队出版的<美团机器学习实践>,下载链接见文末. 美团算法团队由数百名优秀算法工程师组成,负责构建美团这个生活服务互联网大平台的"大脑",涵盖搜索.推荐.广告.风控.机器学习.计算机视觉.语音.自然语言处理.智能调度.机器人和无人配送等多个技术方向,在帮助美团数亿活跃用户改善用户体验的同时,也帮助餐饮.酒店.婚庆.丽人.亲子等200多个行业的数百万商户提升运营效率.我们致力于通过算法和人工智能技术,帮大家吃得更好,活得更好.https://bo
零起点PYTHON机器学习快速入门 PDF |网盘链接下载|
点击此处进入下载地址 提取码:2wg3 资料简介: 本书采用独创的黑箱模式,MBA案例教学机制,结合一线实战案例,介绍Sklearn人工智能模块库和常用的机器学习算法.书中配备大量图表说明,没有枯燥的数学公式,普通读者,只要懂Word.Excel,就能够轻松阅读全书,并学习使用书中的知识,分析大数据.本书具有以下特色:独创的黑箱教学模式,全书无任何抽象理论和深奥的数学公式.首次系统化融合Sklearn人工智能软件和Pandas数据分析软件,不用再直接使用复杂的Numpy数学矩阵模块.系统化的
python机器学习经典实例PDF高清完整版免费下载|百度云盘|Python基础教程免费电子书
点击获取提取码:caji 在如今这个处处以数据驱动的世界中,机器学习正变得越来越大众化.它已经被广泛地应用于不同领域,如搜索引擎.机器人.无人驾驶汽车等.Python机器学习经典实例首先通过实用的案例介绍机器学习的基础知识,然后介绍一些稍微复杂的机器学习算法,例如支持向量机.极端随机森林.隐马尔可夫模型.条件随机场.深度神经网络,等等. 本书特色 用最火的Python语言.通过各种各样的机器学习算法来解决实际问题! 书中介绍的主要问题如下. 探索分类分析算法并将其应用于收入等级评估问题 使用预测
LightGBM的并行优化--机器学习-周振洋
LightGBM的并行优化 上一篇文章介绍了LightGBM算法的特点,总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出.在时间和空间上都更胜一筹,准确率也比其他模型表现得更好.这些模型在处理一般规模的数据时,单机即可以解决,然而当数据规模更大时,即需要进行分布式计算,分担每台机器(worker)的压力.这篇文章介绍LightGBM的两种并行学习算法(Feature Paralle
【NLP】基于机器学习角度谈谈CRF(三)
基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角
[机器学习]梯度提升决策树--GBDT
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类. 集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法 集成学习 集成学习
机器学习算法总结(十二)——流形学习(Manifold Learning)
1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示.所以直观上来讲,一个流形好比是一个$d$维的空间,在一个$m$维的空间中$(m > d)$被扭曲之后的结果.需要注意的是流形并不是一个形状,而是一个空间.举个例子来说,比如说一块布,可以把它看成一个二维的平面,这是一个二维的空间,现在我们把它扭一扭(三维空间),它就变成了一个流形,当然不扭的时候,
机器学习算法总结(五)——聚类算法(K-means,密度聚类,层次聚类)
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内
2017 年 机器学习之数据挖据、数据分析,可视化,ML,DL,NLP等知识记录和总结
今天是2017年12月30日,2017年的年尾,2018年马上就要到了,回顾2017过的确实很快,不知不觉就到年末了,再次开篇对2016.2017年的学习数据挖掘,机器学习方面的知识做一个总结,对自己所学的知识也做一个梳理,查漏补缺关于数据挖据.数据分析,可视化,ML,DL,NLP等. 作者:csj更新时间:2017.12.27 email:59888745@qq.com 说明:因内容较多,会不断更新 *学习总结: 2016.10 主要看的书 <Python3-廖雪峰>,<Python核
机器学习四 SVM
目录 引言 SVM 线性可分SVM 线性不可分SVM Hinge Loss 非线性SVM 核函数 总结 参考文献 引言 在深度神经网终(Deep Neural Network, DNN) 大热之前, 在机器学习里有个明星算法就是今天要与大家分享的 支持向量机(Support Vector Machine, SVM). 它是昔日的明星, 虽然现在没有DNN风光, 但它依然是机器学习领域内耀眼的存在, 这当然取决于其强大的学习能力. 第一次听到SVM想必大家跟我一样,这是什么东西,这个'高大上'的名
Java电子书高清PDF集合免费下载
这份资源是我经过多年积累才整理归类出来,有很多电子书我觉质量还是非常高的,由于电子书太多我也是用业余时间挑着看的,这么多资源自己保存着也是浪费,就想着现在把资源分享出来,希望能真正帮到大家: 资源我都整理在网盘了,之前分享出来的链接没过几天就自动取消,我就在文章底部放了二维码,需要的添加好友就行了,都是免费领取的,不然没几天我就要重新更新一次链接,也没有那么多时间,加好友请备注“博客园电子书”: Java Java 8实战pdf Java 8函数式编程.pdf 基于J2EE的Ajax宝典pdf
【NLP】条件随机场知识扩展延伸(五)
条件随机场知识扩展延伸 作者:白宁超 2016年8月3日19:47:55 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度的
XGBoost参数调优完全指南(附Python代码)
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是
AI 学习路线
[导读] 本文由知名开源平台,AI技术平台以及领域专家:Datawhale,ApacheCN,AI有道和黄海广博士联合整理贡献,内容涵盖AI入门基础知识.数据分析挖掘.机器学习.深度学习.强化学习.前沿Paper和五大AI理论应用领域:自然语言处理,计算机视觉,推荐系统,风控模型和知识图谱.是你学习AI从入门到专家必备的学习路线和优质学习资源. 基础知识 1.数学 数学是学不完的,也没有几个人能像博士一样扎实地学好数学基础,入门人工智能领域,其实只需要掌握必要的基础知识就好.AI的数学基础最主要
【NLP】前戏:一起走进条件随机场(一)
前戏:一起走进条件随机场 作者:白宁超 2016年8月2日13:59:46 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都有应用.本文源于笔者做语句识别序列标注过程中,对条件随机场的了解,逐步研究基于自然语言处理方面的应用.成文主要源于自然语言处理.机器学习.统计学习方法和部分网上资料对CRF介绍的相关的相关,最后进行大量研究整理汇总成体系知识.文章布局如下:第一节介绍CRF相关的基础统计知识:第二节介绍基于自然语言角度
热门专题
导入bin文件 格式错误
如何将设置xaml 中的static resource 常量
EasyDL接口文档
svn edit log message无效
vue 引入js new出来
ubuntu 命令 联想
开启tomcat对WebDAV的支持
autofac作用域
File.separator 不能读成目录
windows10 安装四叶草
nodejs 多项目打包部署
language-pack-zh-hans依赖包
mysql中change用法
gradle7 本地aar
drools官方学习文档
Arcgis制图表达
3Dmax DT插件
python对比两个文件夹名字并读取
如何用os读取用户选择文件夹地址控件
根据中国气象局提供的API接口实现天气查询