首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
机器学习对数几率回归
2024-11-03
机器学习总结-LR(对数几率回归)
LR(对数几率回归) 函数为\(y=f(x)=\frac{1}{1+e^{-(w^{T}x+b)}}\). 由于输出的是概率值\(p(y=1|x)=\frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}},p(y=0|x)=\frac{1}{1+e^{w^{T}x+b}}\),所以求解使用极大似然估计来求解参数\(w,b\). 为了方便表示,记\(\widehat{w}=(w;b),\widehat{x}=(x;1)\) 写出似然函数\[\prod_{i=1}^{m}p(y=1|\
机器学习-对数logistics回归
今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我们需要的或许只有是和不是,也就是0或1的关系,这时候我们就需要一个联系函数y=1/(1-e^(-1)) 作为桥梁这样我们就可以无限趋近于我们的0或者1. 然后就是参数估计,通过最大似然估计函数可以得到最简单的结果 最后还是需要通过梯度下降求得最终的解答 我学习的书是<机器学习西瓜书>周志华
对数几率回归法(梯度下降法,随机梯度下降与牛顿法)与线性判别法(LDA)
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-05-09 15:03:50 # @Author : whb (whb@bupt.edu.cn) # @Link : ${link} # @Version : $Id$ import numpy a
机器学习5- 对数几率回归+Python实现
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 准确率召回率 F1 度量 ROC AUC 1. 对数几率回归 考虑二分类任务,其输出标记 \(y \in \{0, 1\}\),记线性回归模型产生的预测值 \(z=\boldsymbol{w}^T\boldsymbol{x} + b\) 是实值,于是我们需要一个将实值 \(z\) 转换为 \(0/1\) 的 \(g^{-}(\cdot)\)
对数几率回归(逻辑回归)原理与Python实现
目录 一.对数几率和对数几率回归 二.Sigmoid函数 三.极大似然法 四.梯度下降法 四.Python实现 一.对数几率和对数几率回归 在对数几率回归中,我们将样本的模型输出\(y^*\)定义为样本为正例的概率,将\(\frac{y^*}{1-y^*}\)定义为几率(odds),几率表示的是样本作为正例的相对可能性.将几率取对便可以得到对数几率(log odds,logit). \[logit=\log\frac{y^*}{1-y^*} \] 而对数几率回归(Logistic Reg
学习笔记TF009:对数几率回归
logistic函数,也称sigmoid函数,概率分布函数.给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率.接受单个输入.多维数据或训练集样本特征,可以用线性回归模型表达式合并成单值. 损失函数可以使用平方误差.训练集"Yes"代表100%概率或输出值1的概率.损失刻画特定样本模型分配小于1值概率."No"概率值0.损失是模型分配样本概率值并取平方.平方误差惩罚与损失同数量级情形.输出与期望相差太远
机器学习之逻辑回归(Logistic)笔记
在说逻辑回归之前,可以先说一说逻辑回归与线性回归的区别: 逻辑回归与线性回归在学习规则形式上是完全一致的,它们的区别在于hθ(x(i))为什么样的函数 当hθ(x(i))=θTx(i)时,表示的是线性回归,它的任务是做回归用的. 当时,表示的是逻辑回归,假定模型服从二项分布,使用最大似然函数推导的,它的任务是做分类用的,逻辑回归是一个广义的线性模型,是对数线性模型. 下面就是逻辑回归的推导过程了 首先我们来看看核函数即sigmoid函数的对Z的导数 这个结果在后续的推导过程会用到,这里的Z我们可
100天搞定机器学习|Day8 逻辑回归的数学原理
机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN Day7,我们学习了K最近邻算法(k-NN),了解了其定义,如何工作,介绍了集中常用的距离和k值选择.Day8,作者转回之前的逻辑回归内容,推荐了Saishruthi Swaminathan的一篇文章. 身处墙内,这个链接无法打开.不过也不用跳墙看原文,找了一下,发现已有博主翻译过
机器学习二 逻辑回归作业、逻辑回归(Logistic Regression)
机器学习二 逻辑回归作业 作业在这,http://speech.ee.ntu.edu.tw/~tlkagk/courses/ML_2016/Lecture/hw2.pdf 是区分spam的. 57维特征,2分类问题.采用逻辑回归方法.但是上述数据集在kaggle中没法下载,于是只能用替代的方法了,下了breast-cancer-wisconsin数据集. 链接在这http://archive.ics.uci.edu/ml/machine-learning-databases/breast-c
[机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid函数分类 4.2 基于最优化方法的最佳回归系数确定 4.2.1 梯度上升算法: 4.2.2 测试算法:使用梯度上升算法找到最佳参数 4.2.3 分析数据:画出决策边界 4.2.4 训练算法:随机梯度上升 4.3 示例1:从疝气病症预测病马的死亡率 4.4 示例2:从打斗数和接吻数预测电影类型(数据自
机器学习之Logistic 回归算法
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ(x(i))-y(i) ) ] * xi .经过查找资料才知道,书中省去了大量的理论推导过程,其中用到了线性函数.sigmoid 函数.偏导数.最大似然函数.梯度下降法.下面让我们一窥究竟,是站在大神的肩膀描述我自己的见解. 1.2 Logistic 回归的引入 Logistic 回归是概率非线性模型
机器学习:logistic回归
逻辑回归是一个形式是Y=1/(1+E(-X))的函数,它的特点是: 1, 当X>0,随着X增大,Y很快的接近1: 2,当x<0,随着X的减小,Y很快的接近0: 3,当X=0时,Y=1/2. 由于逻辑回归的这种特性(在0-1之间连续),它被用来判断一个学习算法是否正确. 除了正确和不正确的结果之外,使用逻辑回归的好处在于,它还能告诉你,你离正确的结果还差多少,从而引导你向正确的方向前进.因此它常常和梯度上升的算法结合起来.下面的代码体现了这样的例子: 输入参数1是100行,2列的矩阵: 输入参数
机器学习之logistic回归算法与代码实现原理
Logistic回归算法原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10033567.html 主要思想 根据现有数据对分类边界线建立回归公式,以此进行分类,其核心是通过最优化算法寻找最佳回归系数(权重系数),主要应用于二分类. 算法原理 二分类的特点是非此即彼,其数学特性符合单位阶跃函数,在某一点会发生突变.这也符合我们现实当中的一些应用场景(比如分数从0 到 60会很容易,越往上你所花的时
【机器学习】逻辑回归(Logistic Regression)
注:最近开始学习<人工智能>选修课,老师提纲挈领的介绍了一番,听完课只了解了个大概,剩下的细节只能自己继续摸索. 从本质上讲:机器学习就是一个模型对外界的刺激(训练样本)做出反应,趋利避害(评价标准). 1. 什么是逻辑回归? 许多人对线性回归都比较熟悉,但知道逻辑回归的人可能就要少的多.从大的类别上来说,逻辑回归是一种有监督的统计学习方法,主要用于对样本进行分类. 在线性回归模型中,输出一般是连续的,例如$$y = f(x) = ax + b$$,对于每一个输入的x,都有一个对应的y输出.模
机器学习 (三) 逻辑回归 Logistic Regression
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3. 逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交
机器学习:逻辑回归(OvR 与 OvO)
一.基础理解 问题:逻辑回归算法是用回归的方式解决分类的问题,而且只可以解决二分类问题: 方案:可以通过改造,使得逻辑回归算法可以解决多分类问题: 改造方法: OvR(One vs Rest),一对剩余的意思,有时候也称它为 OvA(One vs All):一般使用 OvR,更标准: OvO(One vs One),一对一的意思: 改造方法不是指针对逻辑回归算法,而是在机器学习领域有通用性,所有二分类的机器学习算法都可使用此方法进行改造,解决多分类问题: 二.原理 1)OvR 思想:n 种类型
机器学习5—logistic回归学习笔记
机器学习实战之logistic回归 test5.py #-*- coding:utf-8 import sys sys.path.append("logRegres.py") from numpy import * import logRegres dataArr, labelMat = logRegres.loadDataSet() logRegres.gradAscent(dataArr, labelMat) # weights = logRegres.gradAscent(dat
Python机器学习算法 — 逻辑回归(Logistic Regression)
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏. Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别). 回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优
机器学习实战-logistic回归分类
基于LR的回归分类实例 概念 前提理解: 机器学习的三个步骤:模型,损失函数(即样本误差),优化求解(通过损失函数,使得模型的样本误差最小或小于阈值,求出满足条件的参数,优化求解包括:最小二乘法,梯度下降). 链接1:简析python3深浅复制与赋值 https://cloud.tencent.com/developer/news/53299 Python3中赋值操作其实是对象的引用,相当于起了个别名,赋值关系,即整个内外层对象的引用,内外层都指向同一内存. :SGD详解 https://www
机器学习之softmax回归笔记
本次笔记绝大部分转自https://www.cnblogs.com/Luv-GEM/p/10674719.html softmax回归 Logistic回归是用来解决二类分类问题的,如果要解决的问题是多分类问题呢?那就要用到softmax回归了,它是Logistic回归在多分类问题上的推广.此处神经网络模型开始乱入,softmax回归一般用于神经网络的输出层,此时输出层叫做softmax层. 1.softmax函数 首先介绍一下softmax函数,这个函数可以将一个向量(x1,x2,...,xK
热门专题
Fiddler Composer 输入代码
python 录制屏幕声音
ajax 请求头传递 Authorization
springmMVC 非maven
kafka 配置文件
installscript DeleteDir 无法删除目录
input禁用ime输入
access主窗口的菜单栏中有几个菜单
mac vmware安装win10无法启动
spss 计算贝叶斯判别后验概率
golang做fps游戏辅助
rocketmq延时队列配置
PIE-SDK外部接口
vs 2008 编译错误查看
mac Android studio 模拟器不能上网
mac phpstorm 内存
unity quad 播放mp4
python 定时器abscheduler
qt解决无边框界面拖动卡屏的问题
Tensorflow 1.1环境怎么配置