一.LR分类器(Logistic Regression Classifier) 在分类情形下,经过学习后的LR分类器是一组权值w0,w1, -, wn,当测试样本的数据输入时,这组权值与测试数据按照线性加和得到x = w0+w1x1+w2x2+- wnxn,这里x1,x2, -xn是样本的n个特征. 之后按照sigmoid函数的形式求出f(x) = 1/(1+e^(-x)) 由于sigmoid函数的定义域为(-INF, INF),值域为(0, 1),因此最基本的LR分类器适合对两类目标进行分类.