首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
机器学习Normalizer怎么计算
2024-11-05
吴裕雄 python 机器学习——数据预处理正则化Normalizer模型
from sklearn.preprocessing import Normalizer #数据预处理正则化Normalizer模型 def test_Normalizer(): X=[[1,2,3,4,5], [5,4,3,2,1], [1,3,5,2,4,], [2,4,1,3,5]] print("before transform:",X) normalizer=Normalizer(norm='l2') print("after transform:",no
初学者必读:IBM长文解读人工智能、机器学习和认知计算
转自:https://zhuanlan.zhihu.com/p/27228015?utm_source=weibo&utm_medium=social 人工智能的发展曾经经历过几次起起伏伏,近来在深度学习技术的推动下又迎来了一波新的前所未有的高潮.近日,IBM 官网发表了一篇概述文章,对人工智能技术的发展过程进行了简单梳理,同时还图文并茂地介绍了感知器.聚类算法.基于规则的系统.机器学习.深度学习.神经网络等技术的概念和原理. 人类对如何创造智能机器的思考从来没有中断过.期间,人工智能的发展起起
【机器学习实战】计算两个矩阵的成对距离(pair-wise distances)
矩阵中每一行是一个样本,计算两个矩阵样本之间的距离,即成对距离(pair-wise distances),可以采用 sklearn 或 scipy 中的函数,方便计算. sklearn: sklearn.metrics.pairwise_distances scipy: scipy.spatial.distance_matrix(用于 p-norm) 或 scipy.spatial.distance.cdist(所有常用距离 metrics) 比较三者的运行时间:(都计算欧式距离) import
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理
大数据计算新贵Spark在腾讯雅虎优酷成功应用解析
http://www.csdn.net/article/2014-06-05/2820089 摘要:MapReduce在实时查询和迭代计算上仍有较大的不足,目前,Spark由于其可伸缩.基于内存计算等特点,且可以直接读写Hadoop上任何格式的数据,逐渐成为大数据处理的新宠,腾讯分享了Spark的原理和应用案例. [编者按]MapReduce由于其设计上的约束只适合处理离线计算,在实时查询和迭代计算上仍有较大的不足,而随着业务的发展,业界对实时查询和迭代分析有更多的需求,单纯依靠MapReduc
机器学习算法库scikit-learn的安装
scikit-learn 是一个python实现的免费开源的机器学习算法包,从字面意思可知,science 代表科学,kit代表工具箱,直接翻译过来就是用于机器学习的科学计算包. 安装scikit-learn有两种方式: (1)安装官方发布的包. (2)安装第三方开发工具,里边已经包含了scikit-learn. 对于(2),我推荐的是canopy,在mac和windows都比较好用.可以不用考虑安装python,numpy,scipy,因为canopy已经自自带了这些. scikit-lear
机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y
[转] - Weiflow——微博机器学习框架
Weiflow--微博机器学习框架 本文从开发效率(易用性).可扩展性.执行效率三个方面,介绍了微博机器学习框架Weiflow在微博的应用和最佳实践. 在上期<基于Spark的大规模机器学习在微博的应用>一文中我们提到,在机器学习流中,模型训练只是其中耗时最短的一环.如果把机器学习流比作烹饪,那么模型训练就是最后翻炒的过程:烹饪的大部分时间实际上都花在了食材.佐料的挑选,洗菜.择菜,食材再加工(切丁.切块.过油.预热)等步骤.在微博的机器学习流中,原始样本生成.数据处理.特征工程.训练样本生成
只需十四步:从零开始掌握 Python 机器学习(附资源)
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和
Python 7步机器学习
http://python.jobbole.com/84108/ 由于我们要使用机器学习和科学计算的 packages ,这里建议安装 Anaconda.Anaconda 是一个可在 Linux , OSX , Windows 上运行的 Python 实现工具,拥有所需的机器学习 packages ,包括 numpy,scikit-learn,matplotlib.它还包含iPython Notebook ,一个带有许多教程的交互式环境.这里推荐使用 Python 2.7 ,不是因为特殊原因,
【Streaming】30分钟概览Spark Streaming 实时计算
本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark Streaming相对其他实时计算框架该如何技术选型? 本文主要针对初学者,如果有不明白的概念可了解之前的博客内容. 1.什么是Spark Streaming? 与其他大数据框架Storm.Flink一样,Spark Streaming是基于Spark Core基础之上用于处理实时计算业务的框架.其实
.Spark Streaming(上)--实时流计算Spark Streaming原理介
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP
七步精通Python机器学习--转载
作者简介: Matthew Mayo 翻译:王鹏宇 开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者.这篇概述的主要目的是带领读者接触众多免费的学习资源.这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好? 我假定本文的读者不是以下任何领域的专家: 机器学习 Python 任何Py
预见未来丨机器学习:未来十年研究热点 量子机器学习(Quantum ML) 量子计算机利用量子相干和量子纠缠等效应来处理信息
微软研究院AI头条 https://mp.weixin.qq.com/s/SAz5eiSOLhsdz7nlSJ1xdA 预见未来丨机器学习:未来十年研究热点 机器学习组 微软研究院AI头条 昨天 编者按:自1998年成立以来,微软亚洲研究院一直致力于推动计算机科学领域的前沿技术发展.在建院20周年之际,我们特别邀请微软亚洲研究院不同领域的专家共同撰写“预见未来”系列文章,以各自领域的前瞻视角,从机器学习.计算机视觉.系统架构.图形学.自然语言处理等多个方向出发,试图描绘一幅未来科技蓝图. 本文中
实时流计算Spark Streaming原理介绍
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafka.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理.最后还可以将处理结果存储到文件系统,数据库和实时仪表盘.在“One Stack rule t
机器学习第1课:引言(Introduction)
1.前言 Machine Learning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能. 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳.综合而不是演译. 在过去的十年中,机器学习帮助我们自动驾驶汽车,有效的语音识别,有效的网络搜索,并极大地提高了人类基因组的认识. 机器学习是当今非常普遍,你可能会使用这一天几十倍而不自知.很多研究者也认为这是最好的人工智能的取得方式. 在
100天搞定机器学习|Day1数据预处理
数据预处理是机器学习中最基础也最麻烦的一部分内容 在我们把精力扑倒各种算法的推导之前,最应该做的就是把数据预处理先搞定 在之后的每个算法实现和案例练手过程中,这一步都必不可少 同学们也不要嫌麻烦,动起手来吧 基础比较好的同学也可以温故知新,再练习一下哈 闲言少叙,下面我们六步完成数据预处理 其实我感觉这里少了一步:观察数据 [此处输入图片的描述][1] 这是十组国籍.年龄.收入.是否已购买的数据 有分类数据,有数值型数据,还有一些缺失值 看起来是一个分类预测问题 根据国籍.年龄.收入来预测是够会
只需十四步:从零开始掌握Python机器学习(附资源)
转载:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和 suo.im/96wD3.本教程的作者为 KDnuggets 副主编兼
TensorFlow Federated:基于分散式数据的机器学习
https://www.tensorflow.org/federated/ TensorFlow Federated (TFF) 是一个开源框架,用于对分散式数据进行机器学习和其他计算.我们开发 TFF 是为了促进联合学习 (FL) 的开放研究和实验,FL 是一种机器学习方法,使我们能够跨多个参与客户端训练共享全局模型,并将训练数据保存在本地.例如,FL 已被用于训练手机键盘的预测模型,但不会将敏感的输入数据上传到服务器. 开发者可以利用借助 TFF 对其模型和数据模拟所包含的联合学习算法,以及
Python机器学习的步骤
原文出处: kdnuggets 译文出处:数据工匠 开始.这是最容易令人丧失斗志的两个字.迈出第一步通常最艰难.当可以选择的方向太多时,就更让人两腿发软了. 从哪里开始? 本文旨在通过七个步骤,使用全部免费的线上资料,帮助新人获取最基本的 Python 机器学习知识,直至成为博学的机器学习实践者.这篇概述的主要目的是带领读者接触众多免费的学习资源.这些资源有很多,但哪些是最好的?哪些相互补充?怎样的学习顺序才最好? 我假定本文的读者不是以下任何领域的专家: ▪ 机器学习 ▪ Python
机器学习-Pandas 知识点汇总(吐血整理)
Pandas是一款适用很广的数据处理的组件,如果将来从事机械学习或者数据分析方面的工作,咱们估计70%的时间都是在跟这个框架打交道.那大家可能就有疑问了,心想这个破玩意儿值得花70%的时间吗?咱不是还有很牛逼的Tensorflow, keras,神经网络,classification等等这些牛逼的技术(词汇)都没学习呢,咋突然冒出来一个pandas就要在机器学习中占了大部分精力去处理呢?其实啊,同学们,什么TensorFlow, Keras,神经网络, 随机森林啥的,看起来牛气哄哄的高大上的词汇
热门专题
Java 图片压缩处理
无法连接到mysql上的本地主机
plotylabel 显示不完全
sas取字符型最大值
linux赋予拥有人文件可读可写可执行
stm32奇偶校验算法
Element快速使用
vue获取jsp跳转的参数
ssm查询按时间段查询
luasocket 教程
在单片机Keil软件中怎么将多个代码结合起来
用js生成一个m到n的随机数
kali Linux Vega工具安装与解决报错
centos7安装rabbitmq局域网访问
bundle在线压缩
python保存只保存当前得
c语言中一行代码太长怎么办
react点击事件跳转页面
js 给对象属性换个名字
node 强制依赖关系