首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
查看kafka消息生产情况
2024-08-13
kafka已生产消息查看
在测试过程中有用到kafka,由于开发说我往kafka里面生产了消息,通知了对方要消费....看到这块一头雾水 kafka主要2个功能生产和消费 ##查询topic列表 ./kafka-topics.sh --list --zookeeper localhost:21810 ###模拟生产数据./kafka-console-producer.sh --broker-list 10.12.70.18:9092,10.12.70.19:9092,10.12.70.20:9092 --topic pa
apache kafka消息服务
apache kafka中国社区QQ群:162272557 apache kafka参考 http://kafka.apache.org/documentation.html 消息队列分类: 点对点: 消息生产者生产消息发送到queue中,然后消息消费者从queue中取出并且消费消息.这里要注意: 消息被消费以后,queue中不再有存储,所以消息消费者不可能消费到已经被消费的消息. Queue支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费. 发布/订阅 消息生产者(发布)将消息
推送kafka消息失败
晚上变更 怎么都推不过去,蛋疼,睡饱后加了个hosts没想到好了,然后搜了一下,大概是如下的原因 转自 https://www.cnblogs.com/linlianhuan/p/9258061.html kafka配置的问题排查 问题反馈: xx现场测试环境下,整个平台的数据,除了原始数据模块,其他模块正常运行.相同版本的包,在线上环境上原始数据的订阅是正常的,但是测试环境没有,查看所有相关的日志,均没有报异常,且日志中有正常显示已经把数据发送到kafka.但是从kafka的日志里查,没
一次 kafka 消息堆积问题排查
收到某业务组的小伙伴发来的反馈,具体问题如下: 项目中某 kafka 消息组消费特别慢,有时候在 kafka-manager 控制台看到有些消费者已被踢出消费组. 从服务端日志看到如下信息: 该消费组在短时间内重平衡了 600 多次. 从 cat 查看得知,每条消息处理都会有 4 次数据库的交互,经过一番沟通之后,发现每条消息的处理耗时大概率保持在 200ms 以上. Kafka 发生重平衡的有以下几种情况: 消费组成员发生变更,有新消费者加入或者离开,或者有消费者崩溃: 消费组订阅的主题数量发
线上kafka消息堆积,consumer掉线,怎么办?
线上kafka消息堆积,所有consumer全部掉线,到底怎么回事? 最近处理了一次线上故障,具体故障表现就是kafka某个topic消息堆积,这个topic的相关consumer全部掉线. 整体排查过程和事后的复盘都很有意思,并且结合本次故障,对kafka使用的最佳实践有了更深刻的理解. 好了,一起来回顾下这次线上故障吧,最佳实践总结放在最后,千万不要错过. 1.现象 线上kafka消息突然开始堆积 消费者应用反馈没有收到消息(没有处理消息的日志) kafka的consumer group上看
Kafka 消息监控 - Kafka Eagle
1.概述 在开发工作当中,消费 Kafka 集群中的消息时,数据的变动是我们所关心的,当业务并不复杂的前提下,我们可以使用 Kafka 提供的命令工具,配合 Zookeeper 客户端工具,可以很方便的完成我们的工作.随着业务的复杂化,Group 和 Topic 的增加,此时我们使用 Kafka 提供的命令工具,已预感到力不从心,这时候 Kafka 的监控系统此刻便尤为显得重要,我们需要观察消费应用的详情. 监控系统业界有很多杰出的开源监控系统.我们在早期,有使用 KafkaMonitor 和
kafka消息的分发与消费
关于 Topic 和 Partition: Topic: 在 kafka 中,topic 是一个存储消息的逻辑概念,可以认为是一个消息集合.每条消息发送到 kafka 集群的消息都有一个类别.物理上来说,不同的 topic 的消息是分开存储的,每个 topic 可以有多个生产者向它发送消息,也可以有多个消费者去消费其中的消息. Partition: 每个 topic 可以划分多个分区(每个 Topic 至少有一个分区),同一 topic 下的不同分区包含的消息是不同的.每个消息在被添加到分区时,
一文看懂Kafka消息格式的演变
摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topic将被分为多个partition(分区).每个partition在
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变
转载来自朱小厮博客的 一文看懂Kafka消息格式的演变 ✎摘要 对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topi
spark streaming 接收kafka消息之二 -- 运行在driver端的receiver
先从源码来深入理解一下 DirectKafkaInputDStream 的将 kafka 作为输入流时,如何确保 exactly-once 语义. val stream: InputDStream[(String, String, Long)] = KafkaUtils.createDirectStream [String, String, StringDecoder, StringDecoder, (String, String, Long)]( ssc, kafkaParams, fromO
Kafka消息丢失
1.Kafka消息丢失的情况: (1)auto.commit.enable=true,消费端自动提交offersets设置为true,当消费者拉到消息之后,还没有处理完 commit interval 提交间隔就到了,提交了offersets.这时consummer又挂了,重启后,从下一个offersets开始消费,之前的消息丢失了. (2)网络负载高.磁盘很忙,写入失败,又没有设置消息重试,导致数据丢失. (3)磁盘坏了已落盘数据丢失. (4)单 批 数 据 的 长 度 超 过 限 制 会 丢
、第1节 kafka消息队列:8、9、kafka的配置文件server.properties的说明
10.kafka的配置文件说明 Server.properties配置文件说明 #broker的全局唯一编号,不能重复 broker.id=0 #用来监听链接的端口,producer或consumer将在此端口建立连接 port=9092 #处理网络请求的线程数量 num.network.threads=3 #用来处理磁盘IO的线程数量 num.io.threads=8 #发送套接字的缓冲区大小 socket.send.buffer.bytes=102400 #接受套接字的缓冲区大小 socke
Kafka基础教程(三):C#使用Kafka消息队列
接上篇Kafka的安装,我安装的Kafka集群地址:192.168.209.133:9092,192.168.209.134:9092,192.168.209.135:9092,所以这里直接使用这个集群来演示 首先创建一个项目,演示采用的是控制台(.net core 3.1),然后使用Nuget安装 Confluent.Kafka 包: 上面的截图中有Confluent.Kafka的源码地址,感兴趣的可以去看看:https://github.com/confluentinc/confluent-
RocketMQ架构原理解析(四):消息生产端(Producer)
RocketMQ架构原理解析(一):整体架构 RocketMQ架构原理解析(二):消息存储(CommitLog) RocketMQ架构原理解析(三):消息索引(ConsumeQueue & IndexFile) RocketMQ架构原理解析(四):消息生产端(Producer) 一.概述 如果你曾经使用过RocketMQ,那么一定对以下发送消息的代码不陌生 DefaultMQProducer producer = new DefaultMQProducer("producerGroup&
Kafka消息模型
一.消息传递模型 传统的消息队列最少提供两种消息模型,一种P2P,一种PUB/SUB,而Kafka并没有这么做,巧妙的,它提供了一个消费者组的概念,一个消息可以被多个消费者组消费,但是只能被一个消费者组里的一个消费者消费,这样当只有一个消费者组时就等同与P2P模型,当存在多个消费者组时就是PUB/SUB模型. Kafka 的 consumer 是以pull的形式获取消息数据的. pruducer push消息到kafka cluster ,consumer从集群中pull消息,如下图.该博客主要
kafka消息会不会丢失
转载:https://baijiahao.baidu.com/s?id=1583469327946027281&wfr=spider&for=pc 消息发送方式 想清楚Kafka发送的消息是否丢失,需要先了解Kafka消息的发送方式. Kafka消息发送分同步(sync).异步(async)两种方式 默认是使用同步方式,可通过producer.type属性进行配置: Kafka保证消息被安全生产,有三个选项分别是0,1,-1 通过request.required.acks属性进行配置: 0
Kafka简介及使用PHP处理Kafka消息
Kafka简介及使用PHP处理Kafka消息 Kafka 是一种高吞吐的分布式消息系统,能够替代传统的消息队列用于解耦合数据处理,缓存未处理消息等,同时具有更高的吞吐率,支持分区.多副本.冗余,因此被广泛用于大规模消息数据处理应用. Kafka的特点: 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能. 高吞吐率.即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输.[据了解,Kafka每秒可以生产约25万消息(50 MB),
【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了,另外两个offset才不到两百.Kafka数据倾斜的问题一般是由于生产者使用的Partition接口实现类对分区处理的问题,一般是对key做hash之后,对分区数取模.当出现数据倾斜时,小量任务耗时远高于其它任务,从而使得整体耗时过大,未能充分发挥分布式系统的并行计算优势(参考Apache Kaf
基于Kafka消息驱动最终一致事务(一)
基本可用软状态最终一致事务 本用例分两个数据库分别是用户库和交易库,不使用分布式事务,使用基于消息驱动实现基本可用软状态最终一致事务(BASE).现在说明下事务逻辑演化步骤,尊从CAP原则,即分布式系统不能全部确保一致性.可用性.分区容错性,只能三选二.文章里从一致性模式讨论,例子里每次出售物品时,将一行添加到交易表中,并更新买方和卖方的数量. 使用ACID风格的事务这是强一致性事务,SQL将如图所示.
kafka消息队列的简单理解
kafka在大数据.分布式架构中都很流行.kafka可以进行流式计算,也可以做为日志系统,还可以用于消息队列. 本篇主要是消息队列相关的知识. 零.kafka作为消息队列的优点: 分布式的系统 高吞吐量.即使存储了许多TB的消息,它也保持稳定的性能. 数据保留在磁盘上,因此它是持久的. 一.pull模式 消息队列有push模式和pull模式.push模式是消息队列推送给消息消费者,pull模式是消息消费者从消息队列中拉取. 二.发布 - 订阅消息系统 kafka是一个分布式的发布 - 订阅(pu
热门专题
pycharm 包裹只有两个
Pako 压缩与解压
navcat 远程连接oracle 是否需要客户端
python输入一维数组输出二维数组
在linux下使用maven编译protobuf
python 悲观锁,乐观锁
sketch颜色模式怎么改
winform 快捷键
vue3中proxy的工作原理
datagrid total赋值
sqlserver 数据类型判断 float
xshell创建文件之后vm显示不出来
jedis 聚合操作报错
一个语言具备哪些功能他就是图灵完备
vulnhub Os-hackNos-1 账号密码
宝塔iis 目录浏览
ubuntu下使用perf
shape Area 算面积
centos查看外网是否通
mnist手写数字识别数据集npz文件