1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键! k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,非常耗时,这种方法不可行,为了提高k近邻的搜索效率,常常考虑使用特殊的存储结构存储训练数据,以减少计算距离的次数,具体方法很多,这里介绍实现经典的kd树方法. 2.构造kd树 kd