Embedding tflearn.layers.embedding_ops.embedding (incoming, input_dim, output_dim, validate_indices=False, weights_init='truncated_normal', trainable=True, restore=True, reuse=False, scope=None, name='Embedding') Embedding layer for a sequence of int
参考列表 Selective Search for Object Recognition Selective Search for Object Recognition(菜菜鸟小Q的专栏) Selective Search for Object Recognition(Surge) Selective Search for Object Recognition(原始论文) Efficient Graph-Based Image Segmentation(快速图像分割) Homepage of K
谷歌路过这个专门介绍HMM及其相关算法的主页:http://rrurl.cn/vAgKhh 里面图文并茂动感十足,写得通俗易懂,可以说是介绍HMM很好的范例了.一个名为52nlp的博主(google “I Love Natural Language Processing”估计就能找到)翻译后的HMM入门介绍如下,由于原文分了很多章节,我嫌慢了还是一次性整理,长文慎入吧. 一.介绍(Introduction) 我们通常都习惯寻找一个事物在一段时间里的变化模式(规律).这些模式发生在很多领域,比如计
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabilistic Language Model 一个神经概率语言模型 摘 要 统计语言模型的一个目标是学习一种语言的单词序列的联合概率函数.因为维数灾难,这是其本质难点:将被模型测试的单词序列很可能是与在训练中见过的所有单词的序列都不相同.传统的但非常成功的基于n-gram的方法通过将出现在训练集很短的重