正则化与过拟合(highvariance)和欠拟合(highbias)的关系-部分(五) ML的诊断方法-部分(六) 如何采取下一步-部分(七) 部分(五) 从图中可以看出,正则化项可以用来影响模型函数对数据是否过拟合,正则化项的本意是防止过拟合的,但是对于前面的lamuda的正确的选取却很重要,对于第一个坐标系来说,因为lamuda太大,导致正则化项很小,即在训练后会使得theta(1)~theta(n)都趋向于0,而只有一个参数theta(0),使得决策线(此处举例的是线,而非面)成为了一个