首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
正则表达式—>NFA—>DFA—>DFA最小化
2024-11-05
正规式->最小化DFA说明
整体的步骤是三步: 一,先把正规式转换为NFA(非确定有穷自动机), 二,在把NFA通过"子集构造法"转化为DFA, 三,在把DFA通过"分割法"进行最小化. 一步很简单,就是反复运用下图的规则,图1 这样就能转换到NFA了. 给出一个例题,来自Google book.本文主要根据这个例题来讲,图2 二.子集构造法. 同样的例题,把转换好的NFA确定化,图3 这个表是从NFA到DFA的时候必须要用到的.第一列第一行I的意思是从NFA的起始节点经过任意个ε所能到达
[编译原理代码][NFA转DFA并最小化DFA并使用DFA进行词法分析]
#include <iostream> #include <vector> #include <cstring> #include "stack" #include "algorithm" using namespace std; int NFAStatusNum,AlphabetNum,StatusEdgeNum,AcceptStatusNum; char alphabet[1000]; int accept[1000]; in
自动构造词法分析器的步骤——正规式转换为最小化DFA
正规式-->最小化DFA 1.先把正则式-->NFA(非确定有穷自动机) 涉及一系列分解规则 2.再把NFA通过"子集构造法"-->DFA 通过子集构造法将NFA转化为DFA 将表里的变量名用比较简单的符号代替(最好是在进行构造的时候顺手在草稿纸上标记好,方便后面的工作) 对照上面的表,画出DFA的状态转换图 图中0,1,2,3,4,5都是终态,因为他们的集合里都包含了最初的终态"数字9". 3.再把DFA通过"分割法"进行最小
编译原理中DFA最小化
关于编译原理最小化的操作,专业术语请移步至:http://www.360doc.com/content/18/0601/21/11962419_758841916.shtml 这里只是记录一下个人的理解,以备复习使用 DFA最小化的操作步骤: 1.将DFA未最小化前的状态划分为:终态和非终态 终态就是包含了NFA终点结点的状态集合,如下图的NFA,状态10为NFA的终点,所以在DFA的状态集合中,包含了10这个状态的集合就是DFA的终态,那么,不包含的就是非终态了 值得一提的是,在DFA划分非终
DFA最小化实例
原始DFA如下图所示 最小化的定义:1.没有多余的状态(死状态):2.没有两个状态是相互等价的: 两个状态等价的含义:1.兼容性(一致性)——同是终态或同是非终态:2.传播性(蔓延性)——从s出发读入某个a和从t出发经过某个a并且经过某个b到达的状态等价. 令M为DFA中所有状态的集合.1.开始做粗略划分,将状态集M的状态划分为, k1 = {C, D, E, F} k2 = {S, A, B}2.考察k1是否可分,由下面的转换关系k2可以分为{S, B}和{A}. A -> a -> k1
dfa最小化,修正了上个版本的一些错误。
上个版本测试的时候,只用了两个非常简单的测试用例,所以好多情况有问题却没有测试出来 bug1:在生成diff_matrix的时候,循环变量少循环了一次,导致最后一个节点在如果无法与其他点合并的情况下,程序不会给他生成一个群标号. 修改:把循环变量那里加上等于号 bug2:在遍历群的时候,程序是以碰到空指针为结束的,但是在malloc内存的时候,系统并不为这个内存初始化为0,而是0xcd,所以以是不是空指针来判断边界是不可行的,会造成错误,导致读取了而外的信息. 修改:在遍历群的时候,直接以群的数
作业九——DFA最小化
1.将DFA最小化:教材P65 第9题 I {1, 2, 3, 4, 5} {6, 7} {1, 2}b->{1, 2, 3, 4, 5} {3, 4}b->{6, 7} {5}b-> {1, 2, 3, 4, 5}可区别,划分 II {1, 2}{3, 4}{5} {6, 7} {6}b->{6} {7}b->{6} {6, 7}不可区别,等价 III {1, 2}{3, 4}{5} {6, 7} {3}c->{3} {4}c->{4} {3}b->{6,
编译原理:DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 解析: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 解析: S→ 0A|1B →S → 0(1S|1)|1(0S|0) →01S | 01 | 10S | 10 →(01 | 10)S | (01 | 10) →(01 | 10)*(01 | 10) 由正规式可得NFA如下: 由NFA可得DFA状态转换矩阵以及图如下: 最小化DFA如下: 状态转换图如下: 3.给定如下文法 G[S]: S →AB A → aA
DFA 最小化
NDFA.εNDFA 确定化的细节这里就不总结了,这里说一说DFA最小化的算法. 关于DFA最小化,
dfa最小化,终于完成了。
采取的方法是hopcroft的填表法,详情见如下代码 #include "nfa_to_dfa.h" int* dfa_diff_matrix; int mini_dfa_number;//这个是最小化的 dfa表的索引 typedef struct _min_dfa_node { pdfa_edge begin; int is_end;//记录是否是接受节点 }min_dfa_node,*pmin_dfa_node; min_dfa_node mini_dfa_table[];//设
第九次作业——DFA最小化,语法分析初步
老师:MissDu 提交作业 1.将DFA最小化:教材P65 第9题 答: 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 3.自上而下语法分析,回溯产生的原因是什么? 答:文法的产生式有公共左因子. 4.P100 练习4,反复提取公共左因子. S→C$ C→bA|aB A→a|aC|bAA B→b|bC|aBB 答:
DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 语言:(01 | 10)*(01 | 10) 自动机图: DFA状态转换矩阵: 01 10 X {A} ε{A}={BCD} ε{A}={BCD} Y {BCD} {BCD}={BCD} {BCD}={BCD} DFA图: .将DFA最小化 {X} {Y} {X}01->{Y} {X}10->{Y} 不可划分 {Y}01->{Y} {}10->{Y
编译原理之DFA最小化,语法分析初步
1.将DFA最小化: 状态转换图: 识别语言:b*ac*(da)*bb* 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 (1)正规式: S -> 0(1S+1)+1(0S+0) ->01S+01+10S+10 ->(01+10)S+01+10 ->(01|10)*(01|10) (2)NAF (3)DFA: 转换矩阵: 状态图: (4)最小化DFA: 状态图 3.给定如下文法 G[S]: S →AB A → aA | ɛ B → b | bB
第九次作业 DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 Ⅰ {1,2,3,4,5} {6,7} {1,2}b={1,2,3,4,5} 3,4}b={5} {6,7} Ⅱ {1,2}{3,4}{5} {6,7} 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 正规式:S → 0(1S|1)|1(0S|0) →01S | 01 | 10S | 10 →(01 | 10)S | (01 | 10) →(01 | 10)*(01 | 10) 转化DFA 0 1 0 ε{x}={xAD
第九次-DFA最小化,语法分析初步
1.将DFA最小化:教材P65 第9题 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 3.自上而下语法分析,回溯产生的原因是什么? 4.P100 练习4,反复提取公共左因子. 解:1.2 3. 原因:文法的产生式有问题 4.
DFA最小化
1.将DFA最小化:教材P65 第9题 2.构造以下文法相应的最小的DFA S→ 0A|1B A→ 1S|1 B→0S|0 3.自上而下语法分析,回溯产生的原因是什么? 文法中,对于某个非终结符号的规则其右部有多个选择项,当根据所面临的输入符号不能准确的确定所要的选择项时,就可能出现回溯. 4.P100 练习4,反复提取公共左因子.
NFA转DFA - json数字识别
json的主页上,提供了number类型的符号识别过程,如下: 图片引用:http://www.json.org/json-zh.html 实际上这张图片表示的是一个状态机,只是状态没有标出来.因为这个状态机上存在ε转换,所以它是一个NFA(不确定有限自动机).ε转换也即不需要输入串就能进行的转换,例如从开始状态到0之前的状态.而我们进行识别的时候,使用DFA(确定有穷自动机)会简单方便得多.所以首先应该将这个NFA转成DFA. 首先把这个NFA规范一下,写成状态与箭头的形式: NFA转DF
求子串-KPM模式匹配-NFA/DFA
求子串 数据结构中对串的5种最小操作子集:串赋值,串比较,求串长,串连接,求子串,其他操作均可在该子集上实现 数据结构中串的模式匹配 KPM模式匹配算法 基本的模式匹配算法 //求字串subString 在串string中的位置function subString(string, subString){ var i=0,j=0;//当i或j超出范围退出 while(i<string.length&&j<subString.length){ if(string[i]==subSt
nfa转dfa,正式完成
为了加速转换的处理,我压缩了符号表.具体算法参考任何一本与编译或者自动机相关的书籍. 这里的核心问题是处理传递性闭包,transitive closure,这个我目前采取的是最简单的warshall算法,虽然是4次的复杂度,但是由于我构建nfa的时候并没有采取标准的方法,使得nfa的节点减少很多.ps,上上篇所说的re转nfa,我这里有一个修改,就是对于or转换,不再增加节点,而是只增加两条空转换边. 相关代码如下 #include "nfa_process.h" //首先在原来的nf
NFA和DFA区别
一个数据块的访问时间等于寻道时间.旋转延迟时间和数据传输时间三者之和: NFA和DFA区别: 一个状态如A,遇0可以转换到下一个状态B或C,因为选择多所以不确定,因此为不确定的有限自动机: 一个状态还是A,遇0可以转换到下一个状态B(只有B),因为选择只有一个很确定,因此为确定的有限自动机.
热门专题
F1 score的限制
主机访问不了虚拟机防火墙已关闭 tomcat
一、 简述分区模式MBR与GPT的区别
微软提供的robocopy.exe命令
python 定位frame里的元素
centos8如何查看字体
java 实体类日期返回前端是字符串
javaword导出变下载
oracle navicat 服务器权限
ad 09只要顶层有焊盘如何标示让座板厂知道
android webview 关闭音乐
redis服务停止是什么原因
vue 列表、网格模式展示数据
ztree 显示的名称拼接
带有下角标变化的变量如何在python中表示
invokeAll 返回顺序
openlayer 记录标记
微信扫码进入获取用户openId
android 支付密码输入带光标
centos6 nv显卡