引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多.当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了准确率,而且很容易出现梯度消失和梯度爆炸. 这种现象并不是由于过拟合导致的,过拟合是在训练集中把模型训练的太好,但是在新的数据中表现却不尽人意的情况.从上图可以看出,我们的训练准误差和测试误差在层数增加后皆变大了,这说明当网络层数变深后,深度网络变得难以训练. 如果大家还没理解的话,那我讲细一点,网