我没有实现时间复杂度为O(n)的算法. 思路:从第一数开始,onelist[0]:onelist[0]+onelist[1]:这样依次推算出每个子数组的sum值.和max进行比较.最后得到max值. 这里需要确定一个起始节点,最开始是onelist[0]为起始节点.一直加到onelist.length. 然后从onelist[1]一直加到onelist.length. import java.util.Scanner; public class Test { public static voi
群里看到这道题,用python做了做, def find(array): v_sum = greatest = 0 for a in array: v_sum += a v_sum = 0 if v_sum < 0 else v_sum greatest = v_sum if v_sum > greatest else greatest if v_sum == 0: greatest = array[0] for a in array: greatest = a if greatest <
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace 求任意长度数组的最大值__整数类型___方法_ { class Program { public static int Getmax( params int[]arr) { ]; ; i < arr.Length; i++) { ]) { max
Find the contiguous subarray within an array (containing at least one number) which has the largest product. For example, given the array [2,3,-2,4],the contiguous subarray [2,3] has the largest product = 6. 这个求最大子数组乘积问题是由最大子数组之和问题演变而来,但是却比求最大子数组之和要复
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product. Example 1: Input: [2,3,-2,4] Output: 6 Explanation: [2,3] has the largest product 6. Example 2: Input: [-2,0,-1]