一.python求绝对值的三种方法 1.条件判断 2.内置函数abs() 3.内置模块 math.fabs 1.条件判段,判断大于0还是小于0,小于0则输出相反数即可 # 法1:使用条件判断求绝对值 def abs_value1(): # input返回str,需转换为浮点数的格式 a = float(input('1.请输入一个数字:')) if a >= 0: a = a else: a = -a print('绝对值为:%f' % a) 2.abs()函数 # 法2:使用内置函数求绝对值
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time Limit: 5000MS Description 已知一个n元高次方程: 其中:x1, x2,...,xn是未知数,k1,k2,...,kn是系数,p1,p2,...pn是指数.且方程中的所有数均为整数. 假设未知数1 <= xi <= M, i=1,,,n,求这个方程的整数解的个数. 1
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 m 均为正整数).[输入]输入文件名为 equation.in.输入共 n+2 行.第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开.接下来的 n+1 行每行包含一个整数,依次为a ! , a ! , a ! , ... , a ! .[输出]输出文件名为 equation.out.第一
# coding=utf-8 #共轭梯度算法求最小值 import numpy as np from scipy import optimize def f(x, *args): u, v = x a, b, c, d, e, f,g,h = args return a*u**g+ b*u*v + c*v**h + d*u + e*v + f def gradf(x, *args): u, v = x a, b, c, d, e, f,g,h = args gu = g*a*u + b*v +