本篇做一个没有实用价值的mnist rpc服务,重点记录我在调试整合tensorflow和opencv时遇到的问题: 准备模型 mnist的基础模型结构就使用tensorflow tutorial给的例子,卷积-池化-卷积-池化-全连接-dropout-softmax,然后走常规的优化训练,得到一个错误率2.0%的结果: 然后准备一个单张图片的输入,一个(1, 28, 28, 1)的tensor,输入到模型里,得到一个单条的输出,给它们定好名字: 将模型保存下来: 加载模型 用c++写一个thr